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Supplementary Information 
 
Photomedicine  Various light-based technologies have been developed for diagnosis and 
treatment. Fluorescence imaging has shown great promise in the early detection of diseases 
because of its high sensitivity and molecular specificity in vivo (Ntziachristos et al., 2005; 
Weissleder and Mahmood, 2001). Optically controlled treatment methods, such as photodynamic 
therapy (PDT) (Castano et al., 2006; Hamblin and Hasan, 2004; von Maltzahn et al., 2009), low-
level light therapy (Huang et al., 2009), controlled drug release (Yavuz et al., 2009), and 
photochemical tissue bonding (Kamegaya et al., 2005), utilize the photothermal and 
photochemical effects of light on cells and molecules. These techniques are rapidly emerging, 
while PDT in particular is widely used in ophthalmology and oncology (Agostinis et al., 2011). 
In addition, new ground-breaking tools, such as optogenetics (Boyden et al., 2005) and light-
controlled synthetic biology (Ye et al., 2011), continue to emerge. Fiber-optic catheters can bring 
a light source closer to the tissue in the body; however, delivering the light further into the 
deeper target remains a challenge. To date, the clinical applications of light-based techniques 
have been limited to the superficial tissues in the skin or eye or to the epithelial surfaces of 
internal organs. 
 
Light penetration in tissue  Figure 1 illustrates the problem of light penetration. When light is 
applied to the skin topically, its penetration is limited to the epidermis and upper dermis layers 
(Salomatina et al., 2006). At a typical optical dose (180 J/cm2), bleaching of the dye was 
observed only in the superficial layer (<1.5 mm), indicating that sufficient optical intensity was 
achieved only at the top surface of the skin. Increasing the light intensity is not possible, as it can 
cause thermal damage in the superficial tissue. Increasing the illumination time is not practical 
either. This problem of penetration depth is a serious limitation for many optical techniques. For 
example, photochemical tissue bonding is a promising method for scar-less wound closure (Yang 
et al., 2012), but its application to full-thickness (5-20 mm) skin excisions is currently not 
possible due to shallow illumination depths.  

 
Fig. 1. Porcine skin with rose Bengal (pink) after external illumination of laser at 532 nm 
with 0.3 W/cm2 for 10 min. Only the dye within the top 1.5 mm-deep region has bleached 
(orange region), indicating that light only reached the superficial layer.  

 
Optical attenuation in tissue  Optical penetration in tissue is fundamentally limited by 
absorption. Scattering contributes to illumination loss in two ways: by increasing the absorption 
through the increase of the propagation length in tissue and also by causing the beam to diverge. 
In general, light intensity decreases exponentially with depth. In the case of uniform illumination 
over a wide area (>10 cm2), the attenuation can be expressed as: 

I(z)=I0*exp(–µeff*z)  (1) 
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where I0 is the input intensity. Here, the effective attenuation coefficient µeff is given by: 

µeff=[3*µa*(µ’s+µa)]1/2 , (2) 

where µ’s is the reduced scattering coefficient, and µa is the absorption coefficient of the tissue. 
At a wavelength (λ) of 480 nm, µeff = ~-20 cm-1, and the total attenuation is 4x10-9 cm-1 or 84 
dB/cm. That is, to deliver one photon to z=1 cm, it is necessary to illuminate the surface with as 
many as 200 million photons. The attenuation generally decreases at longer wavelengths (e.g., 
30-60 dB/cm at λ=650 nm, see Table 1) (Cheong et al., 1990). For point sources, such as fiber-
optic illumination, the optical intensity tends to decrease more rapidly with depth due to beam 
divergence. The experiments and the Monte Carlo simulation show that the attenuation is 18-23 
dB at z=1 mm and 28-33 dB at 2 mm for λ=480-650 nm in various tissues (Yizhar et al., 2011). 

λ (nm) µa (cm-1) µs’ (cm-1) 
480 5-10 15-40 
650 1-3 10-35 

Table 1. Optical scattering and absorption in a typical soft tissue. 
 
Bioluminescence resonance energy transfer (BRET)  Bioluminescence is a naturally 
occurring form of chemiluminescence in many organisms, such as the jellyfish, sea pansy, and 
firefly. A small-molecule substrate luciferin is oxidized in the presence of the enzyme luciferase 
to produce oxyluciferin and a photon (Wilson and Hastings, 1998). Bioluminescence imaging 
has been widely used for visualizing gene expression (Contag and Bachmann, 2002) and disease 
progression (Ntziachristos et al., 2005). In many organisms, light is emitted via bioluminescence 
resonance energy transfer (BRET). The green light emission observed in the jellyfish Aequorea 
victoria is a result of the non-radiative energy transfer from the aequorin to green fluorescent 
protein (GFP) (Shimomura, 2009). Renilla reniformis, a coral, emits bright green light by energy 
transfer from the interaction of luciferase (RLuc) and coelenterazine (Shimomura and Johnson, 
1978) with a dimer GFP. Efficient energy transfer from RLuc to quantum dots (So et al., 2006) 
and from RLuc to EYFP (Hoshino et al., 2007) were demonstrated. BRET has been exploited for 
Ca2+ sensing (Martin et al., 2007), protein folding (Angers et al., 2000), and protein-protein 
interactions (Pfleger and Eidne, 2006).  
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Supplementary Fig. 1: Energy diagram of the sequential Förster resonance energy transfer 
(FRET) from an activated coelenterazine (CTZ) to quantum dot (Q-dot or QD) to Chlorin e6, and 
to oxygen molecule. The end products are reactive oxygen species (ROS), through two types of 
processes, both of which generate cytotoxicity.  

 

 

 

Supplementary Fig. 2: TEM images. (a) Luc-QD conjugates. The hydrodynamic diameter of 
the conjugate was measured to be about 20 nm. (b) Luc-QD conjugates attached to the external 
surface of the lipid bilayers of exosomes. (c) Cells incubated with Luc-QD for 20 min. (d) 
Control cells without Luc-QD. 
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Supplementary Fig. 3: Time-lapse confocal fluorescence images of Luc-QD, showing the time-
dependent accumulation of the BL source at the external surface of the cellular membrane. Scale 
bars, 50 µm. 

 

 

 

 

Supplementary Fig. 4: A schematic of the setup to measure the total amount of (a) laser 
absorption and (b) bioluminescence radiation. For the laser measurement, the incident power was 
2.2 mW, and the difference in transmission through the cell culture before and after incubation 
with Ce6 was about 13 µW. In bioluminescence measurement, the collection efficiency is 
determined by the active area of the power meter head and the distance of the photodetector from 
the cell culture. 
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Supplementary Fig. 5: Measured bioluminescence from Luc-QD in the cell culture media. Blue 
circles: the measured data, Green squares: an exponential fit. Red circles: a fit with a theoretical 
curve derived from the rate equations. In this model, the BL intensity is proportional to the 
product of the number of Luc-QD (N1) and CTZ (N2), which is described by the first equation in 
the inset. Both Luc-QD and CTZ were assumed to be degraded as they reaction to produce 
bioluminescence, as indicated by the second and third equations. Solutions of the equations 
predict a 1/t-type decay of both Luc-QD and CTZ. Therefore, the BL intensity is given by the 
last equation in the inset. If the degradation of Luc-QD is neglected and only CTZ is depleted, 
the BL intensity should follow an exponential decay. The measured data are fit best with the 1/t2-
type decay initially in the first 1-2 minutes after the injection of CTZ, suggesting a rapid 
consumption of Luc-QD. Later after 3 min, however, the decay seems to follow an exponential 
decay, indicating the remaining Luc-QD stay functional for up to several minutes. 
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Supplementary Fig. 6: MTT assay of B16F10 cells treated with BL-PDT and laser-PDT.  

 

 

Supplementary Fig. 7: BL-PDT on B16F10-GFP melanoma cells. (a) Time-lapse confocal 
fluorescence images during BL-PDT. The decreases of GFP signals, accompanied by changes of 
cellular morphology, in both cases indicate cellular damages. The GFP signals in control cells 
showed no changes (not shown here). The red fluorescence increases over time during BL-PDT 
as the Luc-QD conjugates in the medium accumulate around the cells at the bottom of the culture 
well plate. (b) GFP signals during laser-PDT. Control cells without laser illumination showed no 
changes in GFP fluorescence intensity. 
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Supplementary Fig. 8: Confocal images of LLC cells after treatments. PI-positive nuclei are 
surrounded by large Luc-QD (i, ii), and PI-negative nuclei are with no or less Luc-QD (iii and 
iv).  
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Supplementary Fig. 9: Confocal fluorescence images of Single-Oxygen-Sensor-Green (SOSG) 
post CTZ injection into CT26 cells in vitro. (a) At 0 min, SOSG are located in the culture 
medium outside the cells in a non-fluorescent form. At 3 min, SOSG have entered some of the 
cells through their damaged membranes and turned to fluorescent forms by reaction with singlet 
oxygen. At 10 min, most cells show green fluorescence in their cytoplasm. Scale bars, 100 µm. 
(b) Time-lapse confocal images of SOSG in another experiment, taken with a time interval of 1 
min.  
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Supplementary Fig. 10: (a) Immunohistochemistry (IHC) image of an untreated tumor stained 
for CD31. (b) IHC images of a BL-PDT treated tumor, stained for CD31 (green) and apoptosis 
marker, APR-648 (white). (c) IHC for DAPI, CD31, Caspase-3 and APR-648. (d) The vascular 
density estimated by the CD31 signals integrated over the APR-648 positive region, indicating a 
significant vascular disruption by BL-PDT. ***, p<0.001. 
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Supplementary Fig. 11: Bioluminescence images showing the draining of Luc-QD and CTZ to 
the popliteal LN.  

 

 

 

Supplementary Fig. 12: Bioluminescence images showing the draining of Luc-QD and CTZ to 
the lumbar LN (arrows).  
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Supplementary Fig. 13: Lung samples excised from the animals at day 25 after implantation of 
LLC tumors in the footpad. Top, from animals treated with BL-PDT at day 11; Bottom, untreated 
animal group. 
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Supplementary Fig. 14: Reduced lymphatic drainage to the sentinel lymph node, observed four 
days after BL-PDT in a CT-26 bearing mouse. 

 

 


