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SUPPLEMENTARY MATERIALS 
Supplementary Figures and Legends 

 
Figure S1. The top and side views of intravital microscopic imaging on mouse dorsal skinfold window 

chamber model used for tracking the searching behaviors of immunocytes in vivo. 

 

 

Figure S2. Recognition of turns within the cell trajectory. (A) Turn points (Turn) and turn angles (θ). Black 

dots indicate the smoothed cell trajectory (Smoothed). (B) Changes in directions of consecutive 

displacements r(⊿t), which were denoted as ⊿φ. The trajectory shown here is the magnified view of the 

area marked in (A) by the red rectangle. 
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Figure S3. Dependence of the displacement scale factor ζ(t) = Ctγ and the mean squared displacement m.s.d. 

= Atα on the running velocity v in the generalized Lévy walk model. (A, E) C linearly depended on v as C = 

a1 v and (C, G) A increased over v as A = a2 v2. a1 and a2 were constants for each specific Lévy exponent pair. 

Solid lines show the corresponding fitting results. (B, F) γ and (D, H) α were independent of v. Solid lines 

show the mean value over v from 1 µm min-1 to 100 µm min-1. Different colors represent different Lévy 

exponent pairs. For (A–D), μpause = 1.7, whereas for (E–H), μrun = 2.2. 

 

 

Figure S4. For the generalized Lévy walk model, the probability density distribution P(λ(t)) of scaled 

displacement λ(t) = r(t) / ζ(⊿t), was independent of the running velocity v. Red solid lines outline the shape 

of P(λ(t)) at different time intervals: (A) t = 0.17 min, (B) t = 2.00 min and (C) t = 10.00 min. 
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Figure S5. Displacement statistics of simulated cells (Sim) performing the generalized Lévy walk (GLW) 

compared with the corresponding GLW fitting. (A) The displacement probability density distribution P(r(t)) 

at different time intervals t. Colored dots indicate simulated data and solid lines indicate GLW fitting. The 

inset shows P(r(t)) at different t after normalizing the displacement r(t) by the scale factor ζ(t) (ρ = r(t) / ζ(t)). 

The tail of the normalized P(r(t)) was heavier than that of the Gaussian distribution (dashed line; Gaussian 

fitting of the normalized P(r(t)) at t = 5 min). (B) Displacement scale factor ζ(t) of the simulate data (squares) 

with the corresponding GLW fitting (solid line). ζ(t) increased approximately according to a power law tγ, 
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where γ ≈ 0.59 (dashed line). The inset shows the normalized displacement correlation K(τ,t) of the simulate 

data (squares) with the corresponding GLW fitting (solid line). K(τ,t) decayed more slowly than 

exponentially (dashed line) over time τ. (C) Mean squared displacement m.s.d. of the simulated data 

(squares) with the corresponding GLW fitting (solid line). m.s.d. grew approximately according to tα, where 

α ≈ 1.56 (dashed line). The error bars for K(τ,t) and m.s.d. denote the SEM. Simulated data: 600 cells 

performing GLW with µrun = 2.2, µpause = 1.7 and v = 50 µm min-1 and each trajectory covered a time length 

of 12.5 min. 

 

 
Figure S6. Displacement probability density distribution P(r(t)) at different time intervals t of leukocytes 

compared with the corresponding (A) zigzag generalized Lévy walk (Zigzag-GLW) fitting and (B) 

generalized Lévy walk (GLW) fitting. Colored dots indicate the experimental data. Solid lines indicate the 

model fittings. The insets show P(r(t)) at different t after normalizing the displacement r(t) by the scale 

factor ζ(t) (ρ = r(t) / ζ(t)). Normalized P(r(t)) in the insets of A and B were obtained from the Zigzag-GLW 

fitting and the experimental data, respectively. The Gaussian fittings of the normalized P(r(t)) at t = 5 min 

are indicated by dashed lines for comparison. 
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Figure S7. Turning characteristics of dendritic cells (DCs) compared with the corresponding zigzag 

generalized Lévy walk (Zigzag-GLW) fitting and generalized Lévy walk (GLW) fitting. (A–C) Typical 

migration trajectories of DCs (A) and the corresponding Zigzag-GLW fitting (B) and GLW-fitting (C) (green 

dots: raw trajectories (Raw); blue solid lines: smoothed trajectories (Smoothed); red circles: recognized 

turns (Turn)). (D–F) Return maps of turn angles θ of DCs (D) and the corresponding Zigzag-GLW fitting (E) 

and GLW-fitting (F). i denotes the sequence number of θ within each trajectory. 

 

 
Figure S8. Shortest-capture-time-decided search efficiency η as functions of the target detectable radius Rt, 

the immunocyte density N, and the radius of the search area Ra of the zigzag generalized Lévy walk 

(Zigzag-GLW) compared with the generalized Lévy walk (GLW). The η values of the Zigzag-GLW and the 

GLW are similar. The error bars denote the SEM. 
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Figure S9. Immunofluorescence histological analysis revealing the cell types of the investigated leukocytes, 

which were identified from the EGFP cells in B6-EGFP mice, according to the size and shape of leukocytes 

described in previous studies [12, 34, 35]. (A) Skin cryosections from B6-EGFP mice were immunostained 

with CD3 (CD3-Alexa Fluor 594 (17A2)), Ly6G (Ly6G-Alexa Fluor 700 (1A8)), and F4/80 (F4/80-Alexa 

Fluor 647 (BM8)) to label T cells, neutrophils, and macrophages, respectively. The first two columns show 

images obtained from the EGFP channel and the immunofluorescence channel, respectively. The third 

column shows merged images of the first two columns. Yellow arrows indicate representative 

immunostained EGFP cells. Scale bar: 30 μm. (B) The percentage of each immunostained cell type of the 

total identified EGFP cells. ***: P < 0.001, one-way ANOVA and Tukey’s multiple comparison test. The 

error bars denote the SEM. The data were obtained from more than three independent experiments with 3–6 

samples per group for each experiment. 
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Supplementary Methods and Discussion 

Parameter estimation of the GLW model 

In the GLW model, at a fixed velocity v, the walker runs along a straight path of random direction over a 

distance lrun, and then pauses for a time tpause before executing the next run, after which the process is 

repeated. lrun and tpause are drawn randomly from Lévy distributions with Lévy exponents μrun and μpause, 

respectively [23]. Thus, to fit the GLW model to the experimental data, three parameters μrun, μpause and v 

have to be estimated. 

Here, a scaled displacement probability density distribution P(λ(t)), which is independent of the running 

velocity v, was constructed to separately estimate Lévy exponents and v. In detail, P(λ(t)) was constructed 

with the scaled displacement: 

 
( )( )
( )
r tt

t
λ

ζ ∆
= . (1) 

According to simulation studies (Fig. S3), we found that in the scale factor and the mean squared 

displacement of r(t): 
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C = a1 v, A = a2 v2, a1 and a2 are constants for each specific Lévy exponent pair (Fig. S3A, C, E, G), and γ 

and α are independent of v (Fig. S3B, D, F, H). Therefore, we can easily conclude that the scale factor and 

the mean squared displacement of λ(t): 
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are all independent of v. Furthermore, P(λ(t)) was also proven to be independent of v by simulation studies 

(Fig. S4). Thus, based on a series of GLW P(λ(t)) constructed using simulated data with different Lévy 

exponent pairs, the most likely µrun and µpause were estimated independently of v by the least square 

estimation (LSE): 

 2
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where Pexp(λ(t)) is the experimental data and P(λ(t)) is the simulated data. In the simulation, we set v to the 

maximum instantaneous velocity of the experimental data vmax, because according to the model definition, v 

is actually the maximum instantaneous velocity of GLW walkers. To ensure that the statistics are good 

enough to obtain reliable displacement distributions, we set the simulation time unit t0 =⊿t / 200 and the 

simulation distance unit l0 = v t0. The scale factors of the Lévy distributions were set to one (in simulation 

units, l0 or t0). 

After µrun and µpause were determined, we further estimated v based on the displacement probability 

density distribution P(r(t)) in the same spirit: 

 2
2 exp run pauseˆ ˆ( ( ( )) ( ( , , , )))

t
S P r t P r t vm m= −∑ ,  (8) 

 
range 2ˆ arg min ( )v Vv S v∈= ,  (9) 

where Pexp(r(t)) is the experimental data and P(r(t)) is the simulated data. Before estimation, the value range 

of v was greatly narrowed down to Vrange by comparing the scale factor ζ(t) of the GLW model to the 

experimental data.  
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was involved to determine if ζ(t) of a GLW model was close enough to the experimental data, where ζexp(t) 

is the experimental data, ζ(t) is the simulated data, i ≥ 1, and 

 ( 1)
max2 ii flag

iv v− −= .  (11) 

The value range of flagi is [–1, 1]. flagi = 1 means ζ(t) > ζexp(t) for all of the t values. Thus, vi+1 would be set 

to 1/2 vi to further approach to the experimental data. flagi = –1 means ζ(t) < ζexp(t) for all of the t values and 

vi+1 would be set to 2 vi. And then, flagi+1 was sequentially calculated. In such way, the value of flagi was 

continually updated until one of the flowing cases appears: 
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Then, Vrange was determined. 

Evaluation of the GLW parameter estimation method 

To validate the accuracy of the proposed GLW parameter estimation method, we fitted simulated cells 
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performing GLW with µrun = 2.2, µpause = 1.7 and v = 50 µm min-1 to the GLW model using the proposed 

parameter estimation method. The estimated values µrun = 2.2, µpause = 1.7 and v = 49.25 µm min-1 are nearly 

equal to the corresponding true values. The displacement statistics including P(r(t)), ζ(t), m.s.d. and K(τ,t) of 

the simulated data are consistent with those resulting from the GLW fitting well (Fig. S5). Moreover, as 

expected, the simulated data show significantly different features from the Brown walk: the tail of the P(r(t)) 

was heavier than that of the Gaussian distribution (the inset of Fig. S5A); K(τ,t) decayed slowly than 

exponentially (the inset of Fig. S5B); for ζ(t) ~ tγ, γ ≈ 0.59, not 0.5 (Fig. S5B); and α ≈ 1.56, not 1 for m.s.d. 

~ tα (Fig. S5C). 

In addition, when constructing GLW P(λ(t)) with different v values to estimate the Lévy exponents 

(Equations S6 and S7), the estimated values remained constant. This result is in line with the fact that P(λ(t)) 

is independent of v (Fig. S4) and validates that the estimation of Lévy exponents is independent of v. The 

simulated data analyzed here are 600 simulated cells with trajectories covering a time length of 12.5 min. 

The data size is comparable to that of the experimental data of DCs and WBCs. Therefore, while validating 

the accuracy of the GLW parameter estimation method, these results also demonstrate that the data size of 

the experimental data of DCs and WBCs is sufficient to obtain accurate model-fitting results when using the 

proposed method. 

Reduction of the computation quantity during Zigzag-GLW fitting 

GLW parameter estimation is the basis of fitting the Zigzag-GLW model to the experimental data. The 

commonly used estimation methods involve testing specific functional forms of P(r(t)) and determining 

which function is most likely to describe the experimental data. Because the analytical form of the GLW 

P(r(t)) is unknown, numerically constructed P(r(t)) is used. To estimate GLW parameters μrun, μpause and v, a 

number of walkers performing the GLW have to be simulated with various combinations of the three 

parameters to construct different P(r(t)), thus leading to a costly computation. Moreover, in the previously 

used maximum likelihood estimation (MLE), the P(r(t)) at each experimental displacement has to be 

calculated by interpolating values between neighboring histogram points of the GLW P(r(t)) to calculate a 

likelihood. This approach leads to the dependence of the estimated results on the construction of P(r(t)). 

P(r(t)) is constructed with a constant number of data points per bin. To minimize such dependence and find 

the most likely parameters, P(r(t)) constructed with different combinations of the number of bins and the 

number of data points per bin have to be traversed to fit the data [23]. As a result, the computation quantity 

of the MLE is significantly costly. 
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To avoid the costly computation during parameter estimation, we took three measures. First, the P(λ(t)), 

which was independent of v, was constructed to separately estimate Lévy exponents and v. Second, before 

estimation, the value range of v was greatly narrowed down by comparing ζ(t) of the GLW model to that of 

the experimental data. Third, the LSE was used rather than the MLE. Unlike MLE, the LSE only needs to 

calculate the value of GLW P(r(t)) corresponding to each histogram point of the experimental P(r(t)) to 

calculate a sum of squared residuals instead of the likelihood. Thus, the number of interpolated values 

between neighboring histogram points of the GLW P(r(t)) is reduced from the number of experimental 

displacements to the number of bins of the experimental P(r(t)). As a result, the error of interpolating greatly 

decreases, and we only need to construct the GLW P(r(t)) and the experimental P(r(t)) with the same 

number of bins, rather than traverse GLW P(r(t)) constructed with different combinations of the number of 

bins and the number of data points per bin. Since the computation quantity was reduced, we obtained a faster 

estimation of GLW parameters and in turn, a faster Zigzag-GLW fitting. 

The search-and-capture model 

To investigate the search efficiency of immunocytes, we simulated immunocytes’ searching processes using 

a search-and-capture model [23]. In the model, immunocytes with a density N are placed in a search area of 

radius Ra to search for a target of a detectable radius Rt at the center (Fig. 6A). In the present study, we 

focused on DCs and WBCs consisting of mostly T cells and neutrophils in skin tissues that we didn’t 

specifically involve any external stimulation into. In this case, the targets of DCs and T cells are antigens [6, 

44–46] and cells bearing cognate antigens [6, 7], respectively, whereas the targets of neutrophils are tissue 

debris and pathogens [7–9]. Moreover, the targets are all rare. Thus, Rt of the targets of DCs and WBCs were 

estimated as 5–150 µm, since detection might occur upon direct contact or contact within a short distance. 

Moreover, Ra ranging from 300 µm to 1200 µm, which corresponded to a target density of 0.69 mm-2 to 11 

mm-2, were involved in the search-efficiency investigation. N were measured from intravital optical imaging 

results. For DCs, it ranged from 100 mm-2 to 550 mm-2 with a mean value of 180 mm-2, and for WBCs, it 

ranged from 290 mm-2 to 1820 mm-2 with a mean value of 780 mm-2. The standard setting was Rt = 100 µm, 

Ra = 600 µm and N corresponded to the measured mean cell density. 
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Supplementary Movie Legends 
Movie S1. Dendritic cells migrating in vivo. Red solid lines indicate cell trajectories. Gray balls mark cell 

centroids. The time is shown at the upper left corner as min:s. 

Movie S2. Leukocytes migrating in vivo. Red solid lines indicate cell trajectories. Gray balls mark cell 

centroids. The time is shown at the upper left corner as min:s. 

Movie S3. A typical migration trajectory (red) of dendritic cells. The centroid of the cell is marked by a gray 

ball. The time is shown at the upper right corner as min:s. 

Movie S4. A typical migration trajectory (red) of leukocytes. The centroid of the cell is marked by a gray 

ball. The time is shown at the upper right corner as min:s. 

Movie S5. Comparison of the typical search process of the zigzag generalized Lévy walk (Zigzag-GLW) 

and the generalized Lévy walk (GLW) to locate a target. By performing the Zigzag-GLW (red) or the GLW 

(blue), simulated immunocytes (green) were searching for a target (magenta) with a certain detectable radius 

(yellow boundary). The time is shown at the upper right corner as h:min:s. 


