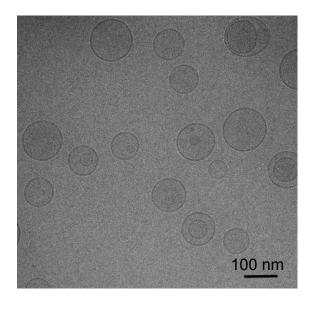
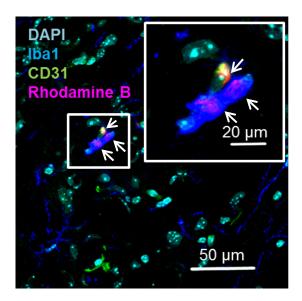
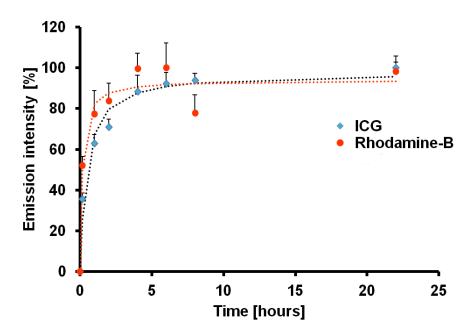
Supporting Information

Indocyanine Green Liposomes for Diagnosis and Therapeutic Monitoring of Cerebral Malaria

Emma Portnoy, Natalia Vakruk, Ameer Bishara, Miriam Shmuel, Shlomo Magdassi, Jacob Golenser*** and Sara Eyal*

*Equal contribution, **corresponding author

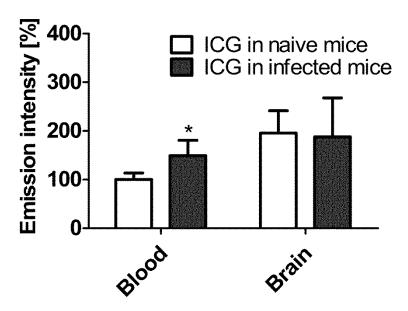

Figure S1. Cryo-TEM image of ICG-liposomes.

Figure S2. Co-localization of liposomal rhodamine B, a microglial/macrophage marker (Iba1) and an endothelial marker (CD31) in the brain cortex of a CM-infected mouse. Magnification x 60, the boxed areas were digitally enlarged. PbA-infected mice were treated as described for Figure 4. The arrows point activated phagocyte Iba1 marker or CD31 endothelial marker, co-localizing with rhodamine-B.

Figure S3. Time-dependent uptake of ICG-rhodamine B-liposomes by the murine monocyte RAW 264.7 cells. The results presented as percent of maximal emission intensity value.

Figure S4. Free ICG accumulation in organs of naïve and infected mice. Mice were injected with ICG solution (200 μ L; 8 mg/kg). Tissues were scanned ex vivo, four hours after ICG injection. Emission intensity values represent percent of organ emission in relation to mean blood intensity of ICG-injected naïve mice. (n=4 for naïve and n=6 for infected mice). Mean \pm SD, *p<0.05 naïve vs. infected mice, Mann-Whitney Test.