SUPPORTING INFORMATION

Evaluation of 3-hydroxypyridin-2-one (2,3-HOPO) based macrocyclic chelator for ⁸⁹Zr⁴⁺ and its use for immunoPET imaging of HER2 positive model of ovarian carcinoma in mice

Jeff N.Tinianow^{1†}, Darpan N. Pandya^{2†}, Sylvie L. Pailloux³, Annie Ogasawara¹, Alexander N. Vanderbilt¹, Herman S. Gill¹, Simon-P. Williams¹, Thaddeus J. Wadas², Darren Magda^{3*}, Jan Marik^{1,*}

Affiliations

¹Department of Biomedical Imaging, Genentech, Inc. 1 DNA way, South San Francisco, CA 94080.

²Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157.

³Lumiphore, Inc. 600 Bancroft Way, Suite B Berkeley, CA 94710

[†]These authors contributed equally to this work.

Address for correspondence

*Jan Marik Department of Biomedical Imaging Genentech, Inc., Mailstop 228 1 DNA Way South San Francisco, California 94080, USA Phone: +1 650 225 8821 Fax: +1 650 742 4905 E-mail: marik.jan@gene.com

*Darren Magda Lumiphore, Inc. 600 Bancroft Way, Suite B Berkeley, CA 94710 dmagda@lumiphore.com

Table of Contents

Section	Page Number
Ligand Synthesis	3
Scheme S1. Synthesis of 1	6
Scheme S2. Synthesis of ^{Nat} Zr-1	8
Figure S1. ESI-MS analysis of ^{Nat} Zr-1	9
Scheme S3. Radiochemical synthesis of ⁸⁹ Zr-1	10
Figure S2. HPLC quality control analysis of ⁸⁹ Zr-1	11
Table S1. In vitro stability: 50mM DTPA challenge	12
Table S2. In vitro stability: Human serum challenge	12
Table S3. Biodistribution of ⁸⁹ Zr- 1	13
Table S4. Analytical data for ⁸⁹ Zr- 1 -mAb and ⁸⁹ Zr-DFO-mAb	14
Figure S3: SEC HPLC traces for ⁸⁹ Zr-labeled antibodies	14
Figure S4 Serum stability of ⁸⁹ Zr- 1 -trastuzumab	15

MATERIALS AND METHODS

Ligand Synthesis

Electrospray ionization (ESI) high-resolution mass spectra (HRMS) were obtained by the Mass Spectrometry Facility, College of Chemistry, University of California, Berkeley, CA. Flash chromatography was performed using EM Science Silica Gel 60 (230 - 400 mesh). NMR spectra were obtained using either Bruker AM-300 or AV-600 spectrometers operating at 300 (75) MHz and 600 (150) MHz for ¹H (or ¹³C) respectively. ¹H (or ¹³C) chemical shifts are reported in parts per million (ppm) relative to the solvent resonances, taken as δ 7.26 (δ 77.0) for CDCl₃. For the deprotected macrocycles **1** and **2**, the observed NMR spectra were very complicated due to the presence of differing conformers/isomers in solution, and are not reported.³ Analytical HPLC was performed on an Agilent 1200 instrument (Agilent, Santa Clara, CA) equipped with a diode array detector (λ = 280 or 315 nm, 600 nm reference), a thermostat set at 25 °C, and a Zorbax Eclipse XDB-C18 column (4.6 x 150 mm, 5 µm, Agilent, Santa Clara, CA). The mobile phase of a binary gradient (Method 1: 2-40% B/20 min; solvent A, 0.1% TFA; solvent B, ACN or Method 2: 10-60% B) at a flow rate of 1 mL/min was used for analytical HPLC. All compounds were ≥95% pure. 3-(Benzyloxy)-6-methyl-1-(2-oxo-2-(2thioxothiazolidin-3-yl)ethyl)-4-(2-thioxothiazolidine-3-carbonyl)pyridin-2(1H)-one 3, N-[2-[2-(2methoxyethoxy]ethoxy]ethoxy]-bis(2-aminoethyl)amine 4 and 5-amino-6-[(2-aminoethyl)-[2-[bis(2aminoethyl)amino]ethyl]amino]hexylcarbamic acid tert-butyl ester 6 were prepared as previously described.¹⁻³ Unless otherwise noted, all other chemicals were purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO USA), and solutions were prepared using ultrapure water (18 M Ω -cm resistivity).

Synthesis of di-macrocycle **1** (Scheme S1). Overview: An excess of di-thiazolide **3** was condensed with N-[2-[2-(2-methoxyethoxy)ethoxy]ethoxy] diethylenetriamine **4** to provide the activated di-amide **5**, which was reacted with amine **6** under high dilution conditions to form the regioisomeric di-macrocycles **7** and **8**. Protective groups were removed using a solution of concentrated hydrochloric acid in acetic acid to provide dimacrocycles **1** and **2**. The structures of **1** and **2** were assigned from fragmentation patterns using tandem mass

3

spectrometry. Lower Rf isomer 8 was isolated in poorer yield; as a result, biological studies were not conducted using derivative 2.

N,N"-bis[3-benzyloxy-1-carbamidomethyl-6-methyl-2-oxo-1,2-dihydropyridine-4-carbonyl(2-

mercaptothiazolide)]-N'-[2-[2-(2-methoxyethoxy)ethoxy]-bis(2-aminoethyl)amine 5. N-[2-[2-(2methoxyethoxy]ethoxy]ethoxy]-bis(2-aminoethyl)amine **4** (382 mg, 1.54 mmol) was dissolved in dichloromethane (33 mL) and diisopropylethylamine (0.8 mL) and added using a syringe pump (NE1000) to a solution 3-benzyloxy-1-carbonyl(2-mercaptothiazolide)methyl-6-methyl-2-oxo-1,2-dihydropyridine-4of carbonyl(2-mercaptothiazolide) 3 (1.99 g, 38.3 mmol) in dichloromethane (50 mL) over a period of 23 hrs at a rate of 1.50 mL/hr. After a further 24 hr, solvent was removed under reduced pressure, and the crude product was purified by silica gel chromatography using 0.1% triethylamine, 2 – 3.5% methanol in dichloromethane as eluents. Fractions containing product were combined, solvent was removed under reduced pressure, and the residue dried in vacuo to provide compound 5 (997 mg, 60.7%). ¹H NMR (600 MHz, CDCl₃): δ = 7.45 – 7.30 (m, 10H, PhH), 6.21 (s, 2H, ArH), 5.19 (s, 4H, PhCH₂O), 4.76 (4H, s, CH₂C=O), 4.29 (t, 4H, NCH₂CH₂S), 3.61 - 3.51 (m, 10H, CH₂O), 3.35 (s, 3H, OCH₃), 3.30 (m, 4H, CH₂NC=O), 2.89 (t, 4H, NCH₂CH₂S), 2.66 (m, 6H, CH₂N), 2.36 (s, 6H, CH₃). ¹³C NMR (150 MHz, CDCl₃): δ = 200.7, 167.0, 165.9, 159.6, 141.8, 141.3, 137.7, 133.2, 128.4, 128.2, 128.1, 104.1, 73.8, 71.8, 70.6, 70.4, 70.2, 58.9, 55.1, 54.4, 52.9, 48.2, 38.0, 29.1, 20.5. FTMS pESI: calculated for C₄₀H₆₀N₇O₁₁S₄ [MH]⁺, 1050.3228, found, 1050.3223.

Benzyl and tert-butyloxycarbonyl-protected di-macrocycles 7 and 8. A solution of N,N"-bis[3-benzyloxy-1carbamidomethyl-6-methyl-2-oxo-1.2-dihydropyridine-4-carbonyl(2-mercaptothiazolide)]-N'-[2-[2-(2methoxyethoxy)ethoxy]ethoxy]-bis(2-aminoethyl)amine 5 (924 mg, 880 µmol) in dichloromethane (49.5 mL) triethylamine 5-amino-6-[(2-aminoethyl)-[2-[bis(2and (0.5 mL) and а solution of aminoethyl)amino]ethyl]amino]hexylcarbamic acid tert-butyl ester 6 (213 mg, 528 µmol) in dichloromethane, isopropyl alcohol (ca. 5%), and diisopropylethylamine (ca. 3%) (50 mL) were added dropwise to dichloromethane (2 L) over a period of four days using two syringe pumps at a rate of 0.5 mL/hr. After an additional two days of reaction, solvent was removed under reduced pressure, and the crude products were purified by silica gel chromatography using 0.1% triethylamine, 5 - 7.5% methanol in dichloromethane as eluents. The silica gel column was prepared so as to have a short section (ca. 1.25") of aluminum oxide (basic,

4

Brockmann I) on its bottom. Fractions containing product were combined, solvent was removed under reduced pressure, and the residue dried in vacuo to provide the protected di-macrocycles 7 (202 mg, 22.7%) and 8 (78 mg, 8.7%). The residue containing lower Rf compound 8 was additionally dissolved in dichloromethane (10 mL) and washed with water (2 x 10 mL) to remove triethylammonium salts prior to yield calculation. Compound **7**: ¹H NMR (300 MHz, CDCl₃): δ = 7.45 – 7.29 (m, 20H, PhH), 6.48 – 6.37 (m, 4H, ArH), 5.56 – 4.78 (m, 8H, PhCH₂O), 4.77 (8H, br s, CH₂C=O), 3.76 – 3.57 (m, 20H, CH₂O), 3.36 (s, 6H, OCH₃), 2.90 (m, 17H, CH₂NC=O, CHNC=O), 2.65 – 2.33 (m, 24H, CH₂N), 2.18 (m, 12H, CH₃), 1.39 (s, 9H, CH₃), 1.03 – 0.98 (m, 6H, CH₂). ¹³C NMR (150 MHz, $CDCl_3$): δ = 167.5, 163.5, 160.4, 155.9, 128.9, 128.6, 128.5, 128.4, 128.3, 74.5, 74.4, 71.9, 71.0, 70.5, 58.9, 52.9, 46.2, 40.4, 38.9, 28.4, 23.1, 20.3, 20.1, 20.0, 19.9, 11.6, 8.0. FTMS pESI: calculated for $C_{105}H_{145}N_{17}O_{24}$ [M+2H]²⁺, 1014.0319, found, 1014.0342. Compound **8**: ¹H NMR (600 MHz, MeOD): δ = 7.41 – 7.30 (m, 20H, PhH), 6.32 – 6.30 (m, 4H, ArH), 5.26 – 4.97 (m, 8H, PhCH₂O), 4.71 (8H, br s, CH₂C=O), 3.69 – 3.56 (m, 20H, CH₂O), 3.35 (s, 6H, OCH₃), 3.34 - 2.90 (m, 17H, CH₂NC=O, CHNC=O), 2.70 - 2.21 (m, 24H, CH₂N), 2.27 (m, 12H, CH₃), 1.41 (s, 9H, CH₃), 1.34 – 1.16 (m, 6H, CH₂). ¹³C NMR (150 MHz, MeOD): δ = 168.1, 164.0, 160.1, 143.1, 141.4, 141.3, 136.7, 136.6, 128.5, 128.4, 128.3, 128.2, 104.2, 78.6, 74.2, 74.0, 71.5, 70.3, 70.2, 70.1, 70.0, 57.7, 53.2, 52.8, 52.0, 48.4, 37.8, 37.6, 29.4, 27.4, 23.1, 19.3, 19.2. FTMS pESI: calculated for C₁₀₅H₁₄₅N₁₇O₂₄ [M+2H]²⁺, 1014.0319, found, 1014.0351.

Di-macrocycle **1**. Benzyl and tert-butyloxycarbonyl-protected di-macrocycle **7** (51 mg, 25 μ mol) was dissolved in 12N hydrochloric acid (1.0 mL) and glacial acetic acid (1.0 mL). The solution was stirred under inert atmosphere for 23 hr, whereupon HCl was removed with a stream of inert gas. Solvents were removed under reduced pressure and the residue was dried in vacuo. The residue was dissolved in methanol (600 + 300 μ L) and transferred to two O-ring microcentrifuge tubes. Ether (ca. 1.5 mL) was added, and the tubes were placed at 4 °C for 1 hr. The tubes were centrifuged at 12,000 rpm for 3 minutes, decanted, the pellets were washed with ether (ca. 1.5 mL) and allowed to air dry. The pellets were dried in vacuo to provide di-macrocycle **7**, pentahydrochloride salt (39.8 mg, 90%). FTMS pESI: calculated for C₇₂H₁₁₃N₁₇O₂₂ [M+2H]²⁺, 783.9118, found, 783.9140. Analysis (C,H,N): Calc. for C₇₂H₁₁₁N₁₇O₂₂.5(HCl).10(H₂O), 44.81, 7.11, 12.35; found, 45.05, 7.45, 12.04. Di-macrocycle **2** was formed from compound **8** following a similar procedure (89%). FTMS pESI: calculated for C₇₂H₁₁₀FeN₁₇O₂₂ [M+Fe]²⁺, 810.3681, found, 810.3706. Tandem mass spectrometry (TOF MSMS

ES⁺) performed on compound **2**, 1566.83 MS1 peak $[M+H]^+$, revealed peaks at mass 761.39 $[M+H]^+$ and 832.45 $[M+H]^+$ consistent with fragmentation across the ethylene diamine bridge. Similar fragmentation was not observed upon analysis of compound **1**, where the main fragment observed was 1548.77 $(M-H_2O)^+$.

Scheme S1. Synthesis of 3,2-HOPO ligands 1 and 2.

Di-macrocycle **1**, 4-isothiocyanatophenylthiourea derivative (**1**-NCS). Di-macrocycle **1** (31.0 mg, 17.7 μ mol) was dissolved in dimethylformamide (886 μ L) and triethylamine (49.4 μ L). The solution was transferred in 5

aliquots to a microcentrifuge tube containing 1,4-phenyldiisothiocyanate (34.1 mg, 177 μ mol) dissolved in dimethylformamide (345 μ L) and mixed at 800 rpm under inert atmosphere for 1.5 hours. The resulting solution was distributed to 5 additional microcentrifuge tubes. Ether (ca. 1.8 mL per tube) was added, and the resulting suspension placed at 4 °C for ca. 2 hr. The tubes were centrifuged at 12,000 rpm for 3 minutes, decanted, the pellets were washed with ether (ca. 2 mL) and allowed to air dry. The pellets were dissolved in dimethylformamide (40 μ L) and methanol (300 μ L), and precipitated and washed with ether as described above. The pellets were dried in vacuo to provide di-macrocycle **1**, 4-isothiocyanatophenylthiourea derivative (**1**-NCS) (29.3 mg, 94%). FTMS pESI: calculated for C80H116N19O22S2 [MH]+, 1758.7984, found, 1758.8022.

References

1. Pailloux, S.L., et al., Synthesis and Chemical Reactivity of a 6-Me-3,2-Hydroxypyridinone Dithiazolide with Primary Amines: A route to New Hexadentate Chelators for Hard Metal(III) Ions. J. Heterocyclic Chem **2015**, *doi: 10.1002/jhet.2372.*

2. Pandya DN, Pailloux S, Tatum D, Magda D, Wadas TJ. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem Commun (Camb). **2015**; 51: 2301-3.

3. Xu J, Corneillie TM, Moore EG, Law GL, Butlin NG, Raymond KN. Octadentate cages of Tb(III) 2hydroxyisophthalamides: a new standard for luminescent lanthanide labels. *J Am Chem Soc.* Dec 14 **2011**;133(49):19900-19910.

Scheme S2. Synthesis of ^{Nat}Zr-1.

Figure S1. ESI-MS of ^{Nat}Zr-**1**.

Scheme S3. Radiochemical Synthesis of ⁸⁹Zr-1.

Figure S2. HPLC quality control analysis of ⁸⁹Zr-1.

Table S1. *In vitro* stability: 50mM DTPA challenge (% intact complex)

Day	⁸⁹ Zr-DFO	⁸⁹ Zr-1				
1	55	100				
2	54	97				
3	53	95				
4	47	93				
5	44	88				
6	43	81				
7	41	78				

Table S2. In vitro stability: Human serum challenge (% intact complex)

Day	⁸⁹ Zr-DFO	⁸⁹ Zr-1
1	100	94
2	100	92
3	100	91
4	100	89
5	100	88
6	100	87
7	100	86

Tissue/Organ	%ID/g (⁸⁹ Zr-1)															
rissue/organ		2 h			4 h		2	24 h		48 h				72 h		
Blood	0.045	±	0.019	0.017	±	0.008	0.004	±	0.001	0.001	±	0.001	0.003	±	0.002	
Heart	0.049	±	0.010	0.044	±	0.016	0.027	±	0.006	0.022	±	0.011	0.022	±	0.007	
Lung	0.174	±	0.046	0.114	±	0.076	0.080	±	0.020	0.055	±	0.013	0.045	±	0.009	
Liver	0.640	±	0.078	0.701	±	0.099	0.650	±	0.080	0.496	±	0.074	0.432	±	0.031	
SMI + contents	0.211	±	0.188	0.107	±	0.055	0.026	±	0.005	0.021	±	0.005	0.015	±	0.001	
LGI + contents	0.837	±	0.485	0.563	±	0.178	0.043	±	0.015	0.030	±	0.003	0.025	±	0.004	
Kidney	34.185	±	2.393	38.504	±	7.070	29.191	±	6.989	18.512	±	1.350	14.733	±	2.204	
Spleen	0.120	±	0.031	0.120	±	0.028	0.137	±	0.117	0.083	±	0.020	0.074	±	0.016	
Pancreas	0.033	±	0.005	0.028	±	0.006	0.021	±	0.014	0.022	±	0.009	0.016	±	0.006	
Stomach	0.197	±	0.226	0.073	±	0.028	0.024	±	0.011	0.018	±	0.007	0.013	±	0.003	
Muscle	0.030	±	0.017	0.038	±	0.025	0.007	±	0.016	0.011	±	0.018	0.007	±	0.005	
Fat	0.025	±	0.014	0.018	±	0.008	0.013	±	0.006	0.011	±	0.006	0.012	±	0.005	
Bone	0.170	±	0.042	0.204	±	0.088	0.272	±	0.066	0.249	±	0.063	0.283	±	0.083	

Table S3. Biodistribution (%ID/g) of ⁸⁹Zr-1 in selected organs at 2, 4, 24, 48, and 72 h p.i.

Table S4. Biodistribution (%ID/g) of ⁸⁹Zr-DFO in selected organs at 2, 4, 24, 48, and 72 h p.i.

Tissue/Organ	2 h	4 h	24 h	48 h	72 h
Blood	0.009 ± 0.003	0.005 ± 0.001	0.001 ± 0.001	0.001 ± 0.001	0.000 ± 0.001
Heart	0.020 ± 0.003	0.019 ± 0.003	0.014 ± 0.002	0.010 ± 0.002	0.009 ± 0.004
Lung	0.060 ± 0.009	0.038 ± 0.006	0.024 ± 0.006	0.019 ± 0.005	0.017 ± 0.004
Liver	0.234 ± 0.023	0.163 ± 0.051	0.081 ± 0.012	0.070 ± 0.007	0.066 ± 0.009
Small intestine	0.357 ± 0.175	0.130 ± 0.080	0.013 ± 0.002	0.008 ± 0.001	0.006 ± 0.001
Large intestine	0.877 ± 0.435	1.020 ± 0.207	0.024 ± 0.004	0.009 ± 0.002	0.008 ± 0.001
Kidney	2.051 ± 0.238	1.848 ± 0.382	1.340 ± 0.137	0.957 ± 0.216	0.689 ± 0.098
Spleen	0.037 ± 0.005	0.036 ± 0.004	0.036 ± 0.007	0.030 ± 0.008	0.027 ± 0.007
Pancreas	0.015 ± 0.005	0.013 ± 0.002	0.012 ± 0.002	0.009 ± 0.003	0.007 ± 0.002
Stomach	0.140 ± 0.124	0.055 ± 0.038	0.014 ± 0.005	0.005 ± 0.003	0.005 ± 0.002
Muscle	0.011 ± 0.001	0.008 ± 0.003	0.006 ± 0.002	0.004 ± 0.001	0.004 ± 0.002
Fat	0.013 ± 0.003	0.009 ± 0.002	0.007 ± 0.002	0.005 ± 0.008	0.008 ± 0.004
Bone	0.051 ± 0.017	0.058 ± 0.008	0.082 ± 0.016	0.092 ± 0.011	0.078 ± 0.014

This data was published previously in Pandya DN, Pailloux S, Tatum D, Magda D, Wadas TJ. Di-macrocyclic terephthalamide ligands as chelators for the PET radionuclide zirconium-89. Chem Commun (Camb). 2015; 51: 2301-3.

 Table S5. Analytical data for ⁸⁹Zr-labeled mAbs

Compound	Loading (per mAb)	HER2 K₀ (pM)	Chelation yield (%)	Purity UV 280 nm (%)	Purity radioactivity (%)	Specific Activity (MBq/mg)
1-trastuzumab	1.7	496	60	93	81	30
DFO-	1.3	481	83	99	98	44
trastuzumab						
1 -gD	1.7	-	69	96	64	33
DFO-gD	1.4	-	79	99	96	44

Figure S3. SEC HPLC traces for ⁸⁹Zr-labeled mAbs, UV 280 nm (left) and PMT (right)

⁸⁹Zr-1-trastuzumab

⁸⁹Zr-DFO-trastuzumab

⁸⁹Zr-**1**-gD

⁸⁹Zr-DFO-gD

Figure S4 Serum stability of ⁸⁹Zr-1-trastuzumab

