#### SUPPLEMENTARY DATA

#### Isolation of compounds from Cimicifuga

The EtOAc-soluble fraction (308 g) of the rhizomes of *C. yunnanensis* was subjected to silica gel column chromatography (cc) and eluted with CHCl<sub>3</sub>-MeOH (100:0, 50:1, 20:1, 10:1, 0:100) to afford fractions A (68.3 g), B (13.2 g), C (92.5 g) and D (42.7 g). Fraction C was successive subjected to silica gel cc and eluted with CHCl<sub>3</sub>-MeOH (30:1 to 10:1) to afford four fractions (C.1-C.4). Fraction C.3 (24.6 g) was further resolved into five fractions (C.3.1-C.3.5) by eluting on a RP-18 column (MeOH-H<sub>2</sub>O, gradient from 50:50 to 100:0). Fraction C.3.3 (9.6 g) was further subjected to repeated silica gel cc, eluted with CHCl<sub>3</sub>-Me<sub>2</sub>CO (gradient from 20:1 to 10:1) to yield **KCY03** (120.6 mg), **04** (80.2 mg), **05** (4.3 mg), **06** (20.1 mg), **14** (58.7 mg), **31** (7.6 mg), **44** (12.3 mg), and **49** (13.4 mg). **KCY08** (135.4 mg) and **37** (10.2 mg) were isolated from fraction C.3.2 (4.2 g) by conducting silica gel cc, eluting with CHCl<sub>3</sub>-Me<sub>2</sub>CO (gradient from 15:1 to 8:1). The EtOAc-soluble fraction (158 g) of the roots of *C. foetida* was

The EtOAc-soluble fraction (158 g) of the roots of C. *Toetida* was chromatographed over a silica gel column and eluted with CHCl<sub>3</sub>-MeOH (100:0, 50:1, 20:1, 10:1, 0:100) to afford fractions A (13.4 g), B (8.7 g), C (34.5 g), and D (37.2 g). Fraction B (8.7 g) was subjected to cc on silica gel. Gradient elution with CHCl<sub>3</sub>-MeOH (60:1 to 40:1) gave fractions B.1, B.2 and B.3. Fraction B.2 (3.8 g) was chromatographed on an RP-18 column (MeOH-H<sub>2</sub>O, gradient from 70:30 to 100:0) and then purified on Sephadex LH-20 (MeOH) to afford **KHF06** (13.1 mg), **07** (21.5 mg), **08** (11.4 mg), **13** (9.7 mg), **21** (17.2 mg), **22** (14.3 mg), **27**(8.4 mg) and **30** (7.6 mg). Fraction C (34.5 g) was subjected to cc on silica gel and eluted

with CHCl<sub>3</sub>-MeOH (gradient from 40:1 to 20:1) to yield fractions C.1, C.2 and C.3. Fraction C.2 (2.6 g) was subjected to silica gel cc (CHCl<sub>3</sub>-Me<sub>2</sub>CO, 4:1), then RP-18 (MeOH-H<sub>2</sub>O, 60:40) to yield **KHF17** (11.2 mg), **24** (4.3 mg), **29** (3.7 mg), **41** (5.6 mg), and **51** (3.8 mg). Fraction C.3 (16.3 g) was chromatographed on silica gel cc (CHCl<sub>3</sub>-Me<sub>2</sub>CO, gradient from 10:1 to 5:1); then RP-18 (MeOH-H<sub>2</sub>O, 60:40) to afford fractions C.3.1-C.3.4. Fraction C.3.2 (2.5 g) was subjected to cc on an RP-18 column (MeOH-H<sub>2</sub>O, 60:40), then purified on a Sephadex LH-20 column (MeOH) to afford **KHF16** (45.3 mg), **18** (11.5 mg) and **38** (23.5 mg).

The EtOAc extract (313.6 g) of the aerial parts of *C. foetida* was subjected to silica gel cc, eluted with CHCl<sub>3</sub>-MeOH (100:0, 50:1, 20:1, 10:1) to afford fractions A (43.2 g), B (23.4 g), C (78.5 g) and D (91.3 g). Fraction B (23.4 g) was divided into four sub-fractions (B.1-B.4) after performing silica gel cc, eluted with CHCl<sub>3</sub>-MeOH (gradient from 60:1 to 40:1). **KYY11** (8.9 mg), **14** (5.6 mg), and **27** (12.3 mg) were purified from fraction **B.2** (8.1 g) by conducting cc on RP-18 (MeOH-H<sub>2</sub>O, 70:30) and then Sephadex LH-20 (MeOH). Fraction **C** (78.5 g) was fractionated into three sub-fractions (**C.1-C.3**) by performing silica gel, eluted with CHCl<sub>3</sub>-MeOH (gradient from 40:1 to 20:1). Fraction **C.2** (16.6 g) was subjected to silica gel cc (CHCl<sub>3</sub>-Me<sub>2</sub>CO, 10:1), then RP-18 (MeOH-H<sub>2</sub>O, 60:40) to yield **KYY04** (21.4 mg), **08** (16.4 mg), **15** (14.3 mg), **18** (8.9 mg), **20** (45.3 mg), **33** (7.6 mg), **41** (23.1 mg) and **56** (18.3 mg).

The EtOAc extract (13.1 g) of the roots of *C. dahurica* was subjected to silica gel cc, eluted with CHCl<sub>3</sub>-MeOH (100:0, 50:1, 20:1, 10:1) to afford fractions A (0.4 g), B (2.8 g), C (5.5 g) and D (3.3 g). Fraction B was subjected to repeated silica gel

cc, eluted with  $CHCl_3-Me_2CO$  (gradient from 20:1 to 10:1) and then repeated semi-preparative HPLC (eluted with  $CH_3CN-H_2O$ , gradient from 60:40 to 85:15 ) to yield **KXG42** (3.5 mg). **KXG106** (2.8 mg), **113** (3.2 mg), and **115** (3.5 mg), were purified from fraction C by conducting silica gel cc, eluting with  $CHCl_3-Me_2CO$ (10:1), followed by repeated semi-preparative HPLC (eluted with  $CH_3CN-H_2O$ , gradient from 50:50 to 80:20).

The EtOAc extract (12.8 g) of the roots of *C. heracleifolia* was subjected to silica gel cc, eluted with CHCl<sub>3</sub>-MeOH (100:0, 50:1, 20:1, 10:1) to afford fractions A (0.5 g), B (2.3 g), C (4.9 g) and D (2.8 g). Fraction C was subjected to repeated silica gel cc, eluted with CHCl<sub>3</sub>-Me<sub>2</sub>CO (10:1) and then repeated semi-preparative HPLC (eluted with CH<sub>3</sub>CN-H<sub>2</sub>O, gradient from 50:50 to 80:20) to yield **KSY38** (2.7 mg).

| Serial number | Name                           | Structure      |
|---------------|--------------------------------|----------------|
| КСҮ03         | Actein                         | HO OH<br>HO OH |
| KCY04         | 23- <i>epi</i> -26-deoxyactein | HO OH<br>HO OH |
| KCY05         | 26-methylacteinol              | HO LINE COLLAR |

The names and chemical structures of compounds isolated from Cimicifuga

| КСҮОб | 24- <i>O</i> -acetyl-25-anhydroshengman<br>ol-3- <i>O-в</i> -D-xylopyranoside |                            |
|-------|-------------------------------------------------------------------------------|----------------------------|
| KCY08 | cimigenol-3- <i>O-8</i> -D-xylopyranoside                                     | HO OH<br>HO OH             |
| KCY14 | 25- <i>О</i> -acetylcimigenol-3- <i>О-в</i> -D-xyl<br>opyranoside             | HO OAC                     |
| KCY31 | Cimicifugoside H1                                                             |                            |
| KCY37 | 15α-hydrofoetidol-3- <i>Ο-ϐ</i> -D-xylopy<br>ranoside                         | HO HO OH<br>HO OH<br>HO OH |
| KCY44 | 12 <i>в-О</i> -acetyl-25-anhydrocimigeno<br>l-3- <i>О-в</i> -D-xylopyranoside |                            |
| KCY49 | 25-chlorodeoxycimigenol-3- <i>O-6</i> -D<br>-xylopyranoside                   |                            |
| KHF06 | 24-O-acetylhydroshengmanol-3-O<br>-β-D-xylopyranoside                         |                            |
| KHF07 | 23-O-acetylshengmanol-3-O-B-D-x<br>ylopyranoside                              |                            |

|       |                                                                                 | •              |
|-------|---------------------------------------------------------------------------------|----------------|
| KHF08 | Cimiaceroside B                                                                 | HO OH          |
| KHF13 | 12 <i>6</i> -hydroxycimigenol-3- <i>О-6</i> -D-xyl<br>opyranoside               |                |
| KHF16 | 24- <i>O</i> -acetylisodahurinol-3- <i>О-в</i> -D-<br>xylopyranoside            |                |
| KHF17 | 12 <i>в</i> ,25- <i>О</i> -diacetylcimigenol-3- <i>О-в</i><br>-D-xylopyranoside |                |
| KHF18 | Asiaticoside A                                                                  | HO OH<br>HO OH |
| KHF21 | 26-deoxyacteinol                                                                | HO<br>HO       |
| KHF22 | Acteinol                                                                        | HO TO OH       |
| KHF24 | 4′,25- <i>O</i> -diacetylcimigenol-3- <i>O</i> -β-D<br>-xylopyranoside          |                |
| KHF27 | 12 <i>в-О</i> -acetylcimigenol                                                  |                |

| KHF29 | 2'-O-(E)-2-butenoyl-25-O-acetylcim<br>igenol-3-O-β-D-xylopyanoside          |                   |
|-------|-----------------------------------------------------------------------------|-------------------|
| KHF30 | 3'-O-acetylactein                                                           | HO O OH<br>ACO OH |
| KHF38 | cimigenol-3- <i>Ο-α</i> -L-arabinoside                                      |                   |
| KHF41 | 3'-O-acetyl-23- <i>epi</i> -26-deoxyactein                                  | HO CO CH          |
| KHF51 | 2′,25- <i>O</i> -diacetylcimigenol-3- <i>O-в</i> -D-x<br>ylopyranosid       |                   |
| КҮҮО4 | 2'-O-acetylcimigenol-3-O-α-L-arabi<br>noside                                |                   |
| КҮҮО8 | 2',24- <i>O</i> -diacetylisodahurinol-3- <i>O</i> - $\alpha$ -L-arabinoside |                   |
| КҮҮ11 | 12 <i>6</i> -hydroxy-25-anhydrocimigeno                                     | HO OH             |

| КҮҮ14 | Isodahurinol                                                                               | HO TO H              |
|-------|--------------------------------------------------------------------------------------------|----------------------|
| KYY18 | 25-anhydrocimigenol-3- <i>Ο-α</i> -L-ara<br>binopyranoside                                 |                      |
| КҮҮ20 | 25- <i>O</i> -acetylcimigenol-3- <i>O</i> -α-L-ara<br>binoside                             |                      |
| KYY27 | Cimiracemonol B                                                                            | HO TO THE REPORT OF  |
| КҮҮЗЗ | 2',24- <i>O</i> -diacetoxy-25-anhydroshe<br>ngmanol-3- <i>O</i> -α-L-arabinopyranosi<br>de | HO OH<br>HO OH<br>OH |
| КҮҮ41 | 4',23- <i>O</i> -diacetylshengmanol-3- <i>O</i> -<br>α-L-arabinopyranoside                 |                      |
| KYY15 | 24- <i>O</i> -acetylisodahurinol-3- <i>O</i> -α-L-a<br>rabinoside                          |                      |

| KYY56  | 23- <i>O</i> -acetylshengmanol-3- <i>O</i> -α-L-a<br>rabinopyranoside     | H<br>H<br>H<br>H<br>H                                                                       |
|--------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| KXG42  | Acerinol                                                                  | О ОН                                                                                        |
| KXG106 | 2'-O-(E)-2-butenoylcimigenol-3-O-<br>α-L-arabinopyranoside                |                                                                                             |
| KXG113 | 3',25- <i>O</i> -diacetylcimigenol-3- <i>O</i> -α-L-a<br>rabinopyranoside | H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H |
| KXG115 | 4',25- <i>O</i> -diacetylcimigenol-3-O-α-L-a<br>rabinopyranoside          |                                                                                             |
| KSY38  | 2',4'-O-diacetylcimigenol-3-O-α-L-a<br>rabinopyranoside                   |                                                                                             |

### SUPPLEMENTARY Figure Legend

Figure S1. KHF16 decreases the protein expression levels of multiple cell

## cycle and apoptosis regulators in MDA-MB-468 and SW527

The legend is same with Figure 5. The quantification data is listed below each band.

Figure S2.. KHF16 blocks the TNF $\alpha$ -induced NF- $\kappa$ B signaling pathway and

#### anti-apoptosis protein expression in MDA-MB-468 and SW527

The legend is same with Figure 6. The quantification data is listed below each band.

## Figure S3. ReIA knockdown reduces the efficacy of KHF16 in MDA-MB-468 and SW527

- A. RelA was knocked down in MDA-MB-468 as measured by WB. RelA siRNA pool contains two target sequences: #1:
  5'-GCCCUAUCCCUUUACGUCAdTdT-3', #2:
  5'-UCCAGUGUGUGAAGAAGCGdTdT-3'.
- B. ReIA was silenced in MDA-MB-468 for 24 h. The cells were treated with KHF16 (10 or 20  $\mu$ M) for 24 h. The cell viability was measured by the Sulforhodamine B (SRB) assay. \*P < 0.05 (Student's t-test).
- C. RelA was silenced in MDA-MB-468 for 24 h. The cell viability was measured after the cells were treated with KHF16 KHF16 (10  $\mu$ M) for 8 or 24 h.
- D. RelA was knocked down in SW527 as measured by WB.
- E. RelA was silenced in SW527 for 24 h. The cell viability was measured after the cells were treated with KHF16 (10 or 20  $\mu$ M) for 24 h.
- F. RelA was silenced in SW527 for 24 h. The cell viability was measured after the cells were treated with KHF16 (10  $\mu$ M) for 8 or 24 h.

# Figure S4. KHF16 is not toxic to mouse splenocytes but inhibits the NF- $\kappa$ B pathway dependent immune response

A. KHF16 is not toxic to mouse splenocytes. Cell viability of mouse splenocytes were performed with the Cell Counting Kit-8 (Dojindo) according to the manufacturer's guidelines after the cells were treated with KHF16 (5-20 μM for 4-24 h). FVB mice were maintained in a specific pathogen–free facility, and all animal experiments were conducted in accordance with protocols approved by the Institutional Animal Care and Use Committee of Kunming Institute of Zoology. Primary splenocytes were isolated from the spleen of

8-week female mice using the mouse 1× Lymphocyte Separation Medium (DKW33-R0100). Blood red cells were deleted using the 1× RBC Lysis Buffer Solution (eBioscience). Splenocytes were cultured in RPMI-1640 medium (Gibco) supplemented with 10% (vol/vol) FBS and 100 U/ml penicillin and 0.1 mg/mL streptomycin (Biological Industries).

B. KHF16 completely blocked the induction of IFN $\gamma$  by PMA/Ionomycin in mouse splenocytes. SYBR Select Master Mix (Life technologies) and a 7900HT Fast Real-time PCR System (Life Technologies) were used for quantitative RT-PCR. Total RNA was prepared for mouse splenocytes and subjected to qRT-PCR using gene-specific primers: mouse IFN $\gamma$  forward primer, 5'-GCGTCATTGAATCACACCTG -3'; reverse primer, 5'-TGAGCTCATTGAATGCTTGG -3'); mouse  $\beta$ -actin (forward primer, 5'-AGGTCATTGAATGCTTGG-3'); mouse  $\beta$ -actin (forward primer, 5'-AGGTCATCACTATTGGCAACGA-3'; reverse primer, 5'-CACTTCATGATGGAATTGAATGTAGTT-3'). Mouse splenocytes were treated with or without KHF16 (10 µM) for 4 h. The cells were treated with or without PMA (20 nM) plus ionomycin (1 µM) along with KHF16 (10µM) for 4 h. Total RNA was extracted for qRT-PCR. \*P < 0.05 (Student's t-test).

|             |      | MD   | A-ME    | 8-468  |      | SW527 |    |      |      |      |      |       |  |  |  |
|-------------|------|------|---------|--------|------|-------|----|------|------|------|------|-------|--|--|--|
|             | 0    | 4    | 8       | 12     | 24   | 0     |    | 4    | 8    | 12   | 24   | hrs   |  |  |  |
| PARP        | -    | -    | -       | -      |      | -     | -  | =    | =    | =    | -    | -116  |  |  |  |
| cl-PARP     | 1.00 | 1.38 | 1.92    | 1.98   | 3.72 | 1.0   | 00 | 1.51 | 2.13 | 2.01 | 2.48 | 10000 |  |  |  |
| cl-Caspase3 |      | Sec. | and the | -      | -    |       |    | -    | -    | -    | -    | -19   |  |  |  |
|             | 1.00 | 1.58 | 1.97    | 1.80   | 4.87 | 1.00  | )  | 1.38 | 1.20 | 1.11 | 2.61 |       |  |  |  |
| XIAP        | -    | -    | -       | -      | -    | -     | -  | -    | -    | -    | -    | -53   |  |  |  |
|             | 1.00 | 1.59 | 1.41    | 1.13   | 0.96 | 1.0   | 0  | 1.08 | 0.60 | 0.51 | 0.57 |       |  |  |  |
| McI-1       | -    |      |         | - 70   |      | _     | _  |      |      | 0.50 | 0.50 | -40   |  |  |  |
|             | 1.00 | 0.99 | 0.96    | 0.73   | 0.66 | 1.0   | 0  | 1.08 | 0.70 | 0.56 | 0.50 |       |  |  |  |
| Survivin    | -    | •    | -       | 0.50   | 0.40 |       |    |      | 0.00 |      | 0.44 | -17   |  |  |  |
|             | 1.00 | 0.96 | 0.66    | 0.59   | 0.42 | 1.00  |    | 0.57 | 0.38 | 0.32 | 0.14 |       |  |  |  |
| Bcl-XL      | -    | -    | -       | -      |      | -     | -  | -    | -    | -    | -    | -30   |  |  |  |
|             | 1.00 | 1.10 | 1.02    | 0.89   | 0.97 | 1.0   | 00 | 1.20 | 0.96 | 0.87 | 0.87 |       |  |  |  |
| Cyclin B1   | -    | **   | 100     | -      | -    | -     | -  |      | -    | -    | -    | -48   |  |  |  |
|             | 1.00 | 0.66 | 0.81    | 0.82   | 1.00 | 1.0   | 0  | 1.17 | 0.98 | 1.00 | 0.90 |       |  |  |  |
| Cyclin D1   | -    | -    | -       | -      | -    | -     | -  | -    | -    | -    |      | -36   |  |  |  |
|             | 1.00 | 0.94 | 1.01    | 0.92   | 1.03 | 1.0   | 0  | 0.89 | 0.60 | 0.60 | 0.46 |       |  |  |  |
| Cyclin E1   | -    | -    | -       | -      | -    | -     |    |      | -    | -    | -    | -50   |  |  |  |
|             | 1.00 | 1.32 | 0.99    | 0.97   | 1.45 | 1.0   | 0  | 0.85 | 0.85 | 0.70 | 0.58 |       |  |  |  |
| p27         |      | -    | -       |        | -    |       |    |      |      |      | -    | -27   |  |  |  |
|             | 1.00 | 1.13 | 1.43    | 0.94   | 1.34 | 1.0   | 0  | 1.14 | 0.97 | 0.88 | 1.26 |       |  |  |  |
| p21         |      | -    | -       | -      |      | -     | -  | -    |      |      |      | -21   |  |  |  |
| -14.000     | 1.00 | 1.49 | 1.08    | 1.56   | 2.10 | 1.0   | 00 | 2.59 | 1.71 | 1.46 | 0.83 |       |  |  |  |
| p15         | _    | _    | _       | _      | _    | -     | _  | _    | _    | _    | _    | -17   |  |  |  |
|             | 1.00 | 1.17 | 1.18    | 1.04   | 1.37 | 1.    | 00 | 1.24 | 1.05 | 1.01 | 1.15 |       |  |  |  |
|             |      |      |         |        |      |       |    |      |      |      |      | 1     |  |  |  |
| p53         | -    | -    |         |        | -    | -     | _  | -    | -    | -    | -    | -53   |  |  |  |
|             | 1.00 | 0.99 | 0.54    | 0.49 ( | 0.58 | 1.0   | 00 | 1.08 | 0.97 | 0.69 | 0.53 |       |  |  |  |
| β-actin     | -    | -    | -       | -      | 1    | -     | _  |      | _    | -    | _    | -43   |  |  |  |
|             |      |      |         |        |      |       |    |      |      |      |      |       |  |  |  |

|            | MD     | DA-N     | 1B-4    | 68       |      | SW2   | 257  |        |
|------------|--------|----------|---------|----------|------|-------|------|--------|
| 5          | 0      | 5        | 10      | 20       | 0    | 5     | 10   | 20     |
| PARP       | -      | -        | -       | See .    | -    | -     |      | -      |
| cl-PARP    | 1.00   | 1.43     | 1.61    | 2.17     | 1.00 | 1.33  | 1.38 | 2.95   |
| Caspase3   | -      | -        | -       | -        | -    | -     | -    |        |
| -Caspase3  | 4.00   | 4.40     |         |          | 1.00 | 1.07  | -    | -      |
| Casnase7   | 1.00   | 1.49     | 1.71    | 2.93     | 1.00 | 1.27  | 5.03 | 6.45   |
| -Caspase7  |        |          |         | -10250   |      |       |      |        |
| easpass, 1 | 1.00   | 1.18     | 1.98    | 2.20     | 1.00 | 1.03  | 1.03 | 1.73   |
| Caspase8   | -      | -        | -       | -        | -    | -     | -    | -      |
| -Caspase8  | 1.00   | 1.19     | 2.81    | 4.66     | 1.00 | 0.96  | 0.98 | 2.79   |
| XIAP       | -      |          |         |          |      |       |      |        |
| 7 (0 U I   | 1.00   | 1.23     | 1.01    | 0.90     | 1.00 | 1.16  | 0.80 | 0.83   |
| Mol 1      |        |          | Christe | 22240405 |      |       |      |        |
|            | 1.00   | 1.34     | 0.99    | 1.01     | 1.00 | 1.36  | 0.93 | 0.85   |
| Cumulation | 1.00   | 1.01     | 0.00    | 1.01     | 1.00 | 1.00  | 0.00 | 0.00   |
| Survivin   | 1.00   | 1.29     | 1.08    | 1.05     | 1.00 | 0.90  | 0.72 | 0.60   |
| Bal V.     |        |          |         |          |      | 10000 |      |        |
| DCI-XL     | 1.00   | 1 14     | 1 16    | 1.18     | 1.00 | 1.01  | 1.01 | 1.06   |
| Quella D4  | 1.00   |          |         | 1.10     |      | 1.01  |      | 1.00   |
| Cyclin B1  | 1.00   | 0.93     | 0.93    | 0.87     | 1.00 | 0.97  | 0.49 | 0.45   |
| 10 0 0210  |        | 0.010.00 | 0.00    |          |      |       |      |        |
| Cyclin D1  |        |          |         |          | -    |       |      |        |
|            | 1.00   | 1.37     | 1.21    | 1.17     | 1.00 | 0.53  | 0.28 | 0.26   |
| Cyclin E1  | -      | -        | -       | -        | -    | -     |      |        |
|            | 1.00   | 1.31     | 1.21    | 1.10     | 1.00 | 0.96  | 0.65 | 5 0.55 |
| 07         |        |          |         |          |      |       |      |        |
| p27        | 1.00   | 1.49     | 1 1 2   | 1.04     | 1.00 | 1 10  | 1 30 | 1.06   |
|            | 1.00   | 1.40     | 1.15    | 1.04     | 1.00 | 1.10  | 1.55 | 1.00   |
| p21        | -      | -        | -       | -        | -    | -     |      |        |
|            | 1.00   | 1.42     | 1.61    | 2.13     | 1.00 | 1.08  | 0.75 | 0.64   |
| n15        |        |          |         |          |      | 02020 |      |        |
| pro        | -      | -        | -       | -        | -    | _     | _    |        |
|            | 1.00   | 1.21     | 1.24    | 1.20     | 1.00 | 0.96  | 0.81 | 0.84   |
| n52        | -      | _        | _       | _        | -    |       |      |        |
| h22        | 4.00   | 4.42     | 4.00    | 0.00     | 4.00 | 0.00  | 0.70 | 0.50   |
|            | 7 1111 | 1 1 3    | 1 119   | 0.98     | 1.00 | 0.96  | U 12 | 0.58   |

Figure S1

В

|                | MDA-MB-468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |      |      |      |        |      | SW527 |      |       |       |        |      |      |      |      |        |        |       |        |        |        |        |        |        |      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|--------|------|-------|------|-------|-------|--------|------|------|------|------|--------|--------|-------|--------|--------|--------|--------|--------|--------|------|
| KHF16(10µM)    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | -    |      |      |        | _    |       | 4    | ŀ     |       |        | _    |      |      |      |        |        |       |        |        | -      | ŀ      |        |        |      |
| TNF-α(10ng/ml) | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5    | 15   | 30   | 60   | 120    | 0    | 5     | 15   | 30    | 60    | 120    | (    | )    | 5    | 15   | 30     | 60     | 120   | 0      | 5      | 15     | 30     | 60     | 120    | min  |
| p-IKKa(ser176) | and the second s |      |      |      | -    | -      |      | 1     |      | -     | -     | -      |      |      |      | -    |        | -      | -     |        | -      | -      | -      |        | -      | -85  |
| /IKKp(sel 177) | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.97 | 3.40 | 3.04 | 1.78 | 1.80   | 1.39 | 1.20  | 1.12 | 1.25  | 0.97  | 1.38   | 1.00 | ) 1  | .23  | 3.74 | 2.54   | 2.49   | 2.01  | 1.74   | 1.29   | 1.80   | 1.90   | 1.38   | 1.56   |      |
| ΙΚΚα           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _    | _    | _    | _    | _      | _    | _     | _    | _     | _     | -      | -    |      | _    | _    | _      | _      | _     | _      | _      | _      | _      | _      | _      | -85  |
| l              | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.14 | 1.11 | 1.24 | 1.40 | 1.28   | 1.51 | 1.43  | 1.47 | 1.40  | 1.3   | 9 1.43 | 1.0  | 0 0  | .95  | 1.04 | 0.99   | 1.13   | 0.96  | 0.99   | 1.01   | 0.96   | 1.18   | 1.00   | 1.00   | ,    |
| ικκβ           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _    | _    | _    | _    | _      | _    | _     | _    | -     | _     |        | -    |      | _    | _    | -      | _      | _     | _      | _      | -      | _      | _      | _      | -87  |
| · · · ·        | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05 | 1.01 | 1.08 | 1.20 | 1.03   | 1.21 | 1.10  | 1.15 | 1.15  | 1.08  | 1.14   | 1.   | 00 0 | .93  | 1.07 | 7 0.95 | 5 1.09 | 0.87  | 0.96   | 0.94   | 0.91   | 1.09   | 0.87   | 1.02   | 1    |
| p-lkBa         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -    | -    | -    | -      | 1    | -     | -    | -     | _     | -      | ]. [ |      |      | _    |        | -      | -     |        | 1000   |        |        |        |        | -39  |
|                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.54 | 3.07 | 2.14 | 2.98 | 3.49   | 1.50 | 1.76  | 2.24 | 1.75  | 5 1.8 | 3 2.41 | 1.0  | 0 1  | .15  | 1.61 | 1.19   | 3.2    | 2.65  | 1.09   | 0.96   | 0.95   | 0.98   | 3 0.99 | 1.02   | ]    |
| lkBα           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -    | _    | -    | -      | -    | -     | -    | -     | -     | -      | -    | -    | -    | -    |        | -      | -     | -      | -      | -      | -      | -      | -      | ]    |
|                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.05 | 0.90 | 0.55 | 0.56 | 1.07   | 0.87 | 0.85  | 0.78 | 0.60  | 0.5   | 5 0.99 | 1    | 00   | 0.93 | 0.59 | 0.49   | 0.7    | 4 0.9 | 5 0.90 | 0.89   | 9 0.81 | 0.75   | 5 0.72 | 0.99   |      |
| XIAP           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _    | _    | _    | _    | _      | _    | _     | _    | _     | _     |        | -    |      |      | -    | -      | -      |       |        | -      |        |        |        | -      | -54  |
| , , , , ,      | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.23 | 1.21 | 1.35 | 1.48 | 1.42   | 1.37 | 1.37  | 1.19 | 1.29  | 1.04  | 0.79   | 1.   | 00 ' | 1.53 | 1.81 | 1.30   | 1.3    | 1.21  | 1.16   | 1.30   | 1.56   | 1.34   | 0.98   | 0.90   | 1    |
| McI-1          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | _    | _    | _    | -      | _    | _     | _    | _     | _     | _      | -    |      | _    | -    | -      | -      | -     | -      | -      | _      | _      | _      | -      | -40  |
|                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.04 | 1.03 | 1.17 | 1.38 | 1.20   | 0.83 | 0.84  | 0.79 | 0.93  | 0.89  | 0.74   | 1.   | 00   | 1.06 | 1.14 | 0.91   | 1.18   | 1.10  | 0.94   | 0.75   | 0.86   | 0.95   | 0.84   | 0.91   | 1    |
| Survivin       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -    | -    | -    | -      | _    | _     |      | -     |       |        |      | _    | _    | -    | -      | -      | -     | -      | -      | -      | _      | -      | -      | l-17 |
|                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.40 | 1.35 | 1.53 | 1.97 | 1.78   | 1.42 | 1.15  | 0.78 | 0.82  | 0.39  | 0.39   | 1    | 00   | 1.20 | 0.95 | 5 0.98 | 3 1.26 | 1.21  | 0.95   | 0.98   | 0.88   | 1.07   | 1.06   | 0.74   | 1    |
| Bel-2          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _    | _    | _    | -    | =      | _    | _     | _    | _     | _     | _      |      |      |      |      | -      |        | -     | -      |        |        |        |        |        | -26  |
| 2012           | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.35 | 1.48 | 1.37 | 1.41 | 2.24   | 2.08 | 1.78  | 1.49 | 2.07  | 1.46  | 1.08   | 1.0  | 00 1 | .06  | 1.00 | 1.61   | 1.39   | 1.39  | 1.10   | 0.91   | 1.11   | 0.97   | 0.86   | 0.57   | 20   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |      |      |      |        |      |       |      |       |       |        |      |      |      |      |        |        |       |        |        |        |        |        |        | _    |
| RelB           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -    | -    | -    | -      | -    | -     | -    | -     | -     | -      | -    | -    | -    | -    |        | -      | -     | -      | -      |        | -      | -      | -      | -70  |
|                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.11 | 1.23 | 1.26 | 1.31 | 1.44   | 1.25 | 1.30  | 1.32 | 1.24  | 1.21  | 1.46   | 1    | 00   | 0.94 | 1.03 | 3 1.00 | ) 1.1  | 1.16  | 1.05   | 5 1.12 | 2 1.14 | 1.2    | 3 1.1  | 5 1.03 |      |
| p-65           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -    | -    | -    | -      | -    | -     | -    | -     | -     | -      | -    |      | _    | -    | -      | -      | -     | -      | -      | -      | _      | -      | -      | -65  |
| , l            | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.09 | 1.18 | 1.16 | 1.16 | 1.20   | 1.13 | 1.16  | 1.19 | 1.16  | 1.07  | 1.23   | 1.0  | 0 1  | .02  | 1.02 | 0.92   | 0.96   | 0.94  | 0.85   | 0.92   | 2 0.9  | 3 1.05 | 5 1.01 | 0.88   | 1    |
| A20            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -    | -    |      | -    | -      |      |       | -    |       |       |        | -    |      | -    | _    | _      | _      | -     | -      | _      | _      | _      | -      | -      | -85  |
|                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.95 | 1.04 | 1.01 | 1.58 | 3 2.89 | 1.53 | 0.85  | 0.83 | 3 1.0 | 8 0.8 | 5 0.60 | 1.0  | 0 0  | .98  | 0.83 | 3 0.98 | 3 1.28 | 1.68  | 1.01   | 1.10   | 1.05   | 1.15   | 1.02   | 1.23   | 1    |
| GAPDH          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _    | _    | _    | _    | _      | _    | _     | _    | _     | _     | _      | -    | _    | _    | _    | _      | _      |       | _      | _      | _      | _      | _      | _      | -39  |

Β

Α

MDA-MB-468 SW527 KHF16(10µM) + TNF-α(10ng/ml) 0 5 15 30 60 120 0 5 15 30 60 120 0 5 15 30 60 120 0 5 15 30 60 120 min р-ЛК 1.00 0.85 0.72 0.80 1.17 1.45 3.00 3.27 3.08 2.90 3.16 2.96 1.00 1.25 1.36 2.21 1.46 1.44 2.32 2.23 2.02 1.71 2.20 2.46 JNK 🔚 1.00 0.88 0.88 1.11 1.16 0.84 0.82 0.90 0.99 0.99 0.88 0.78 1.00 1.13 1.03 1.02 1.05 1.00 1.11 1.01 1.05 0.96 0.89 0.96 1.00 1.07 1.25 1.34 1.34 1.54 1.53 1.69 1.63 1.69 1.54 1.67 1.00 1.11 1.11 1.27 1.26 1.32 1.24 1.14 1.11 1.12 1.10 0.96 STAT3 \_\_\_\_\_ 1.00 0.96 0.99 1.05 1.12 0.96 0.86 1.00 0.95 1.04 1.02 0.97 1.00 1.18 1.16 1.25 1.23 1.17 1.27 1.08 1.13 1.12 1.21 1.07 p-AKT \_\_\_\_\_\_ -60 1.00 1.02 1.23 1.29 1.17 0.99 0.97 1.13 1.13 1.25 1.02 0.91 AKT -----1.00 1.02 1.16 1.23 1.41 1.29 1.13 1.13 1.22 1.28 1.57 1.20 1.00 1.14 1.03 1.13 1.03 1.00 1.00 0.97 0.97 0.96 0.95 0.97 1.00 0.91 1.03 1.07 1.08 0.84 0.79 0.92 0.93 1.02 0.86 0.83 1.00 1.17 1.31 1.65 1.50 1.31 1.16 1.05 1.37 1.36 1.71 1.35 1.00 0.58 0.69 0.97 1.00 0.89 0.77 0.84 0.84 0.97 0.80 0.88 1.00 0.93 0.95 1.15 1.02 1.04 1.00 0.94 1.05 1.12 1.35 1.19 1.00 0.87 1.06 1.03 1.00 0.77 0.82 1.04 1.08 1.23 0.97 0.96 1.00 1.15 1.50 1.80 1.54 1.31 1.19 1.42 1.70 1.73 1.80 1.31 1.00 0.92 0.98 1.00 0.96 0.87 0.77 0.86 0.90 0.96 0.86 0.85 1.00 1.01 0.86 1.02 0.95 0.97 1.02 0.93 1.21 1.03 1.16 1.00 

Figure S2





Figure S4