Supplementary Information for:

Supramolecular Crafting of Self-Assembling Camptothecin Prodrugs with Enhanced Efficacy against Primary Cancer Cells

Hao Su^{1, †}, Pengcheng Zhang^{1, †}, Andrew G Cheetham¹, Jin Mo Koo¹, Ran Lin¹, Asad Masood¹, Paula Schiapparelli², Alfredo Qui ñones-Hinojosa^{2, 4}, and Honggang Cui^{1, 3, 4,*}

¹Department of Chemical and Biomolecular Engineering, and Institute for NanoBioTechnology, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218 United States.

²Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, United States.

³Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, 400 North Broadway, Baltimore, Maryland 21231, United States.

⁴Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States.

[†] These authors contribute equally to this work.

* Corresponding author email: hcui6@jhu.edu

Drug loading calculation

The drug loading of the SAPD is calculated by the following equation

Drug loading (%) =
$$\frac{n \times M_{CPT}}{M_{SAPD}} \times 100\%$$

where *n* is the number of CPT molecules per SAPD, M_{CPT} is molecular weight of the CPT (348.35 g/mol) and M_{SAPD} is the molecular weight of the SAPD.

dCPT-K₂ drug loading (%) = $(2 \times 348.35 / 1592.84) \times 100\% = 43.74\%$ **dCPT-OEG**₅-**K**₂ drug loading (%) = $(2 \times 348.35 / 1884.18) \times 100\% = 36.98\%$ **dCPT-Sup35-K**₂ drug loading (%) = $(2 \times 348.35 / 2411.64) \times 100\% = 28.89\%$

Scheme S1. (a) Synthetic routes of peptide segments ($dCys-K_2$, $dCys-OEG_5-K_2$ and $dCys-Sup35-K_2$) using standard Fmoc solid phase peptide techniques and (b) synthesis of self-assembling prodrugs by mixing peptide segments synthesized in (a) with CPT-etcSS-Pyr in DMSO.

Figure S1. RP-HPLC (a) and ESI-MS spectrum (b) of dCPT-K₂. The peaks at 796.973 and 1592.747 correspond to $[M+2H]^{2+}$ and $[M+H]^{+}$, respectively.

Figure S2. RP-HPLC (a) and ESI-MS spectrum (b) of dCPT-OEG₅-K₂. The peaks at 942.656 and 1884.046 correspond to $[M+\underline{2}H]^{2+}$ and $[M+H]^{+}$.

Figure S3. RP-HPLC (a) and ESI-MS spectrum (b) of dCPT-Sup35-K₂. The peaks at 1206.482 correspond to $[M+\underline{2}H]^{2+}$.

Figure S4. TEM image of nanotubes formed by dCPT-K₂ in water at 100 μ M.

Figure S5. TEM image of nanotubes formed by dCPT-OEG₅-K₂ in water at 100 μ M.

Figure S6. TEM image of nanofibers formed by dCPT-Sup35-K₂ in water at 100 μ M.

Figure S7. (a) Expected molecular mechanism of GSH-induced release of free CPT from the designed conjugates (dCPT-K₂, dCPT-OEG₅-K₂ and dCPT-Sup35-K₂). HPLC analysis of free CPT release from conjugates dCPT-K₂ after 5 minutes incubation (b), dCPT-OEG₅-K₂ after 5 minutes incubation (c) and dCPT-Sup35-K₂ after 10 minutes incubation (d). The conjugates concentrations for all the cases were 25μ M, and the release experiments were carried out in the presence of 10 mM GSH in 10 mM sodium phosphate solution at 37 °C.