Supporting Information

Novel Cs-based upconversion nanoparticles as dual-modal CT and UCL imaging agents for

chemo-photothermal synergistic therapy

Yuxin Liu[†], Luoyuan Li[†], QuanweiGuo, Lu Wang, Dongdong Liu, Ziwei Wei, Jing Zhou*

[†] These authors contribute equally in this work.

Department of Chemistry, Capital Normal University, No.105 Xi San Huan Road, Beijing 100048, P. R.

China.

E-mail: jingzhou@cnu.edu.cn (J. Zhou)

Figure S1. EDXA of UCNP-OA. Minor doped ion of Er^{3+} and Tm^{3+} cannot be found due to their low content. The presence of Cu element results from copper grid during TEM measurements.

Figure S2. TEM images of the UCNP-PEG samples.

Figure S3. Hydrodynamic diameter of the UCNP-PEG.

Figure S4. The loading rate of ICG within 7 days.

Figure S5. The FTIR spectra of UCNP-PEG, UCNP-ICG-RGD, and UCNP-ICG-TOS-RGD.

Figure S6. A) Ninhydrin method for the quantitative analysis of NH₂. B) NH₂ concentration *vs* absorption at $\lambda = 570$ nm.

Figure S7. The UCL spectra before and after surface modification.

Figure S8. UCL images of the UCNP-ICG-RGD dissolved in various solutions before (A), after (B) centrifugation, and redispersion in solutions being ultrasonically treated: (1) water, (2) phosphate buffered saline (PBS), (3) 5% glucose solution, (4) fatal bovine serum (FBS), (5) Dulbecco's modified Eagle medium (DMEM), (6) 0.9% NaCl solution, and (7) artificial cerebrospinal fluid.

Figure S9. UCL spectra of water (A) and free ICG solution (B). Inset: photographs and UCL images of water and free ICG solution.

Figure S10. MTT assays of U87MG cells viability after incubating with UCNP-ICG-RGD at different

concentrations for 12 h and 24 h.

Figure S11. H&E stained images of organs, including (A) heart, (B) liver, (C) spleen, (D) lung, and (E) kidneys from mice with intravenous injections of UCNP-ICG-RGD at different time intervals (30 min, 24 h, 7 d, 30 d, 45 d, and 60 d). Scale bar: 200 μm.

Figure S12. Hematology studies of test and control groups of nude mice (n = 5) intravenously injected with UCNP-ICG-RGD and sacrificed at (A) 30 min, (B) 24 h, (C) 7 days, and (D) 30 days. Blood index including: three important hepatic indicators (ALT (IU L⁻¹), AST (IU L⁻¹), TBIL (umol L⁻¹), TP (g L⁻¹), ALB (g L⁻¹)) and two indicators for kidney functions (CREA (umol L⁻¹), UA (umol L⁻¹)).

Figure S13. Inductively coupled plasma mass spectrometry (ICP-MS) analysis of biodistribution of nanoparticles (Lu³⁺ uptake%) in various organs of mice after 24 h and 48 h intravenous injection with UCNP-ICG-RGD. The major organs: (1) lung; (2) kidneys; (3) heart; (4) liver; (5) spleen; (6) tumor.

Figure S14. (A) TEM images of the NaLuF₄. Scale bar: 100 nm. (B) Diameter distribution of NaLuF₄-OA in cyclohexane (Blue) compared with UCNP-OA (Red).

Figure S15. EDXA of NaLuF₄-based nanoparticles. Minor doped ion of Er^{3+} and Tm^{3+} could not be found due to their low content. The presence of Cu element results from copper grid during TEM measurements.

Figure S16. 3D CT volume-rendered images of mice were obtained before the intravenous injection (left), 30 min after the injection (right) of UCNP-ICG-RGD (200 μ L, 1 mg mL⁻¹). White arrows indicated the locations of the tumors.

Figure S17. The UV-vis-NIR spectra of free α -TOS, UCNP-PEG, and UCNP-TOS-RGD.

Figure S18. Absorption at $\lambda = 785$ nm *vs* ICG concentration.

Figure S19. Absorption at $\lambda = 284 \text{ nm}vs\alpha$ -TOS concentration.

Figure S20. Growth rate of mice following intravenous injection with 200 μ L fresh medium (Blank group).

 Table S1. Biodistribution of nanoparticles (relative Lu uptake expressed by tumor-to-organ ratio) 24 h

	Relative Lu uptake (tumor-to-organ ratio)				
	UCNP	UCNP-ICG	UCNP-ICG-RGD		
Tumor	1.00	1.00	1.00		
Heart	11.43	9.20	20.39		
Liver	0.17	0.09	0.89		
Spleen	0.48	1.12	1.13		
Lung	16.77	14.80	27.9		
kidney	5.12	5.34	7.40		

after intravenous injection with UCNP-PEG, UCNP-ICG, and UCNP-ICG-RGD.

Table S2. Comparison of the CT value between the previously reported CT contrast agents and the $CsLu_2F_7$ -based nanomaterials in this study. The HU value of the $CsLu_2F_7$ -based nanoparticles at 10 mg mL⁻¹ was up to 232.2 which was superior to that of reported CT contrast agents (HU =138 for NaGdF₄), even for NaLuF₄-based nanoparticles (HU = 176.3-220) at the same mass concentration.

Nanomaterial	Diameter (nm)	Concentration (mg mL ⁻¹)	CT Value (HU)	Reference
NaGdF ₄ :Yb,Er	5	10	138	Adv. Funct. Mater. 2011; 21: 4470-7
NaLuF ₄ :Yb, Er	17	10	182.6	Theranostics 2013; 3: 346-53
NaLuF ₄ :Yb, Tm@SiO ₂ -GdDTPA	30	10	220	Biomaterials 2012; 33: 5394-405
NaLuF ₄ :Yb, Er, Tm	13-16	10	176.3	In this work
CsLu ₂ F ₇ :Yb, Er, Tm	10-17	10	232.2	In this work

Table S3. Comparison of CT values between the $NaLuF_4$ - and $CsLu_2F_7$ -based nanoparticles at same mole concentration.

CT Value	Lu Concentration (mM)			
(HU)	9	18	36	
NaLuF₄:Yb, Er, Tm (13-16 nm)	34.4	70.2	174.5	
CsLu ₂ F ₇ :Yb, Er, Tm (10-17 nm)	51.7	114.6	250.3	