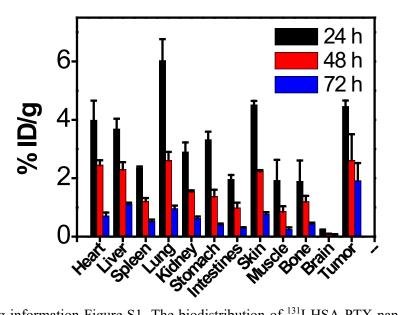
Supporting Information

Radionuclide I-131 Labeled Albumin-Paclitaxel Nanoparticles for

Synergistic Combined Chemo-radioisotope Therapy of Cancer


Longlong Tian^{1,2‡}, Qian Chen^{2‡}, Xuan Yi¹, Guanglin Wang¹, Jie Chen¹, Ping Ning¹,

Kai Yang¹∗[⊠], Zhuang Liu²∗[⊠]

1. School of Radiation Medicine and Protection & School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu, 215123, China

2. Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu, 215123, China

Corresponding authors: <u>kyang@suda.edu.cn</u>, <u>zliu@suda.edu.cn</u> [‡]These authors contributed equally to this work

Supporting information Figure S1. The biodistribution of ¹³¹I-HSA-PTX nanoparticles at 24, 48 and 72 h determined by a gamma counter to measure radioactivity levels in different organs.