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1. The synthesis and characterization of Ag+ fluorescence probe (Ag+-FP) 

 

Figure S1. The synthesis of Ag+ fluorescence probe (Ag+-FP). 

Synthesis of 3’, 6’-bis (diethylamino)-2-(2-hydroxyethyl)-3’, 9’-dihydrospiro [isoindoline-1, 9’-xanthen]- 

3-one (1). Typically, 2-aminoethanol (252 μL, 4.16 mmol) was added to a solution of Rhodamine B (0.500 g, 

1.04 mmol) in ethanol (40 mL), and the resulting mixture was heated at 120 °C for 2 days. The reaction 

mixture was cooled to room temperature and the solvent was evaporated under vacuo. The residue obtained 

was dissolved in EtOAc (30 mL) and successively washed with water (20 mL) and brine (10 mL), dried over 

Na2SO4 and evaporated under vacuo. Finally, the solid obtained was purified by silica gel chromatography 

(10 % MeOH in CH2Cl2) to get compound 1 as a white solid. 1H NMR (400 MHz, CDCl3) δ = 7.95 – 7.82 (m, 

1H), 7.44 (dt, J = 7.3, 3.7 Hz, 2H), 7.15 – 6.98 (m, 1H), 6.49 (d, J = 8.8 Hz, 2H), 6.38 (d, J = 2.5 Hz, 2H), 

6.29 (dd, J = 8.9, 2.6 Hz, 2H), 4.21 (t, J = 5.5 Hz, 1H), 3.47 (dd, J = 9.6, 4.9 Hz, 2H), 3.39 – 3.22 (m, 10H), 

1.16 (t, J = 7.1 Hz, 12H). 13C NMR (101 MHz, CDCl3) δ = 170.10, 153.91, 153.27, 148.88, 132.71, 130.43, 

128.51, 128.15, 123.81, 122.90, 108.22, 104.75, 97.77, 65.88, 62.66, 44.63, 44.37, 12.60 (s). HRMS (ESI): 

m/z calcd for C30H36O3N3 [(M+H+)] 486.2757; Found 486.2747.  
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Synthesis of 3', 6'-bis(diethylamino)-2-(2-iodoethyl)-3', 9a'-dihydrospiro[isoindoline-1, 9'-xanthen]-3- 

one (Ag+-FP). A 100 mL round-bottomed flask were placed compound 1 (0.200 g, 0.41 mmol), triethyl-amine 

(0.630 g, 0.62 mmol) and dichloromethane (30 mL) under argon atmosphere. The mixture was cooled in an 

ice bath and then 38 μL of methanesulfonyl chloride was added dropwise. The reaction mixture was stirred at 

room temperature for overnight. It was washed successively with water (2×10 mL) and brine (10 mL). The 

organic layer was dried over Na2SO4 and evaporated under vacuo. The residue 2 obtained was directly used 

for next step reaction without further purification. The above mesylate were added 20 mL of dry acetone and 

0.076 g (0.5 mmol) anhydrous sodium iodide under inert atmosphere, and the reaction mixture was refluxed 

for 12 h. Then it was cooled down to room temperature and the solvent was removed under vacuo. The 

residue obtained was dissolved in dichloromethane and washed with 10 % aqueous sodium thiosulfate 

solution (10 mL) and brine (10 mL), respectively. The organic layer was dried over Na2SO4 and evaporated 

under vacuo to get a white solid. 1H NMR (400 MHz, CDCl3) δ = 7.83 (dd, J = 5.7, 2.7 Hz, 1H), 7.44 – 7.29 

(m, 2H), 6.98 (dd, J = 5.7, 2.6 Hz, 1H), 6.37 (s, 1H), 6.35 (s, 1H), 6.31 (d, J = 2.4 Hz, 2H), 6.19 (dd, J = 8.9, 

2.5 Hz, 2H), 3.54 – 3.39 (m, 2H), 3.27 (q, J = 7.1 Hz, 8H), 2.82 – 2.66 (m, 2H), 1.10 (t, J = 7.0 Hz, 12H). 13C 

NMR (101 MHz, CDCl3) δ = 165.84, 151.58, 151.21, 146.91, 130.70, 128.60, 126.73, 126.12, 121.82, 120.97, 

106.18, 103.23, 95.82, 62.70, 42.38, 41.09, 10.63. HRMS: (FAB) m/z calcd for C30H35O2N3I [(M+H+)] 

596.1776; found 596.1766. 

2. The characterization of silver nanoparticles (AgNPs)  

 

Figure S2. UV-Vis spectrum (a) and TEM image (b) of the synthesized silver nanoparticles with a diameter 

about 60 nm. 
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3. The characterization of immuno-complexes Ab1-MBs@AG@Ab2-AgNPs 

The conjugation of labeled antibody Ab2 on the surface of silver nanoparticles AgNPs was evaluated by 

immunofluorescence experiments. Typically, 50 μL of Ab2-AgNPs blocked with BSA was first transferred 

into a 0.5-mL Eppendorf tube, and then 100 μL of 10-6 g mL-1 Cy5-labeled second antibody solution were 

added, the mixture was incubated for 30 min at 37 °C with gentle mixing in a TS-100 ThermoShaker. The 

solution was repeatedly centrifuged under optimized conditions to get rid of the excess Cy5-labelled second 

antibody. The obtained Ab2-AgNPs modified with Cy5-labelled second antibody was re-dispersed into 

100µL PBS (50 mM, pH 7.4) and its fluorescence was measured by fluorescence microscope. A similar 

experiment was also performed using BSA blocked AgNPs without Ab2 on the surface of AgNPs. As shown 

in Figure S3, for BSA blocked AgNPs, almost no fluorescence emission was observed at 664 nm. While the 

fluorescence intensity obviously enhanced for Ab2-AgNPs blocked with BSA. These results demonstrate the 

successful binding of Ab2 on the surface of AgNPs. 

 

 

Figure S3. Fluorescence spectra of BSA blocked AgNPs (black line) and Ab2-AgNPs (red line) after 

incubating with Cy5 labelled second antibodies solution (10-6 g mL-1) (ex: 646 nm; em: 664 nm). 

Immunofluorescence experiments were also used to evaluate the conjugation of antibody Ab1 on the 

surface of MBs. Typically, 50 μL of Ab1-MBs blocked with BSA was first transferred into a 0.5-mL 

Eppendorf tube, and 100 μL of 10-6 g mL-1 Cy5-labelled second antibody solution were added, the mixture 
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was incubated for 30 min at 37 °C with gentle mixing in a TS-100 ThermoShaker. After washing three times 

with phosphate buffer solution (50 mm, pH 7.4) including 0.05 % (v/v) Tween 20 (PBST), the Ab1-MBs was 

re-dispersed into 100 µL PBS (50 mM, pH 7.4) and its fluorescence was measured by fluorescence 

microscope. A similar experiment was also performed using BSA blocked MBs without Ab1. As shown in 

Figure S4, for BSA blocked MBs, almost no fluorescence emission was observed at 664 nm. While the 

fluorescence intensity obviously enhanced for Ab1-MBs blocked with BSA. These results demonstrate the 

successful binding of Ab1 on the surface of MBs. 

 

Figure S4. Fluorescence spectra of BSA blocked MBs (black line) and Ab1-MBs (red line) after incubating 

with Cy5 labelled second antibodies solution (10-6 g mL-1) (ex: 646 nm; em: 664 nm).  

In addition, in order to characterize the formation of immuno-complexes Ab1-MBs@AG@Ab2-AgNPs, 

the TEM images of single magnetic beads (analytes captured) Ab1-MBs@AG before and after binding 

Ab2-AgNPs have been demonstrated. As shown in Figure S5, there was no AgNPs could be observed for 

Ab1-MBs@AG before bound with Ab2-AgNPs (Figure S5A). However, it was clearly seen that AgNPs were 

combined on the surface of MBs (Figure S5B), which demonstrated an effectively binding of Ab1-MBs@AG 

with Ab2-AgNPs. 
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Figure S5. The TEM images of single magnetic beads (analytes captured) Ab1-MBs@AG before (A) and 

after (B) binding Ab2-AgNPs. 

4. Fluorescence response of different size AgNPs for AFP 

 

Figure S6. Variation in the analytical signal with different sizes of the silver nanoparticles at a concentration 

of 10 ng / mL AFP. 
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5. Time dependent fluorescence intensity change of 60 nm AgNPs 

 

Figure S7. Time dependent fluorescence intensity of Ag+-FP solution containing 50 mM H2O2 in the 

presence of 10 pM AgNPs (60 nm) (ex: 540 nm; em: 585 nm).  

6. The amount of antibody adsorbed to silver nanoparticles 

The concentration of antibody was optimized to better combine with silver nanoparticles in AFP detection. 

An AFP concentration of 10 ng mL-1 was used to the experiment. As depicted in Figure S5, the concentration 

of antibody should be five times higher than that of AgNPs. Therefore, in the following experiment, a 

concentration of antibody that of ten times AgNPs was used to do the combination. 

 

Figure S8. A) Fluorescence spectra of the immuno-system with a different concentrations antibody (eq. 

AgNPs) modified AgNPs for AFP detection (from a to g: 0, 0.5, 1.0, 3.0, 5.0, 10, 50). The AFP concentration 

was 10 ng mL-1. B) The fluorescence intensity (585 nm) versus the concentrations antibody (eq.AgNPs). 
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7. Determination of detection limit 

The limit of detection (LOD) of Ag+-FP for Ag+ and the detection system for antigen were determined from 

the following equation:  

kLOD σ×= 3                                                                       (S1) 

Where σ is the standard deviation of the blank measurement; k is the slope between the fluorescence intensity 

versus analyte concentration. 

From the graph of Ag+-FP for Ag+ detection, we could get kAg+ = 5.446 from equation (S2), and σAg+ = 0.102 

from blank measurement. Thus the LOD of Ag+ could be calculated to be 0.06 μM, i.e. the Ag+-FP can detect 

Ag+ in this minimum concentration by fluorescence techniques. The theoretical LOD of probe Ag+-FP for 

target antigens can be calculated to be 0.06 pM based on 60 nm AgNPs.[S1-S2] 

1.1465.446XY +=                                                                   (S2) 

From the graph of AFP detection, we could get kAFP = 1.449 from equation (S3), and σAFP = 0.0358 from 

blank measurement. Thus the LOD of AFP could be calculated to be 70 pg·mL−1. 

5.5661.449XY +=                                                                   (S3) 

From the graph of CRP detection, we could get kCRP = 1.261 from equation (S4), and σCRP = 0.0128 from 

blank measurement. Thus the LOD of CRP could be calculated to be 30 pg·mL−1.  

4.6561.261XY +=                                                                   (S4) 

8. The comparison of fluorescence immunoassay with different strategies 

For the fluorescence immunoassay of biomarkers, various strategies have been developed in the previous 

publications. Utilizing CdSe/ZnS quantum dot (QD) labeled antibodies as fluorescence signal material, a 

special fluorescence detection system for human serum albumin (HSA) detection has been developed. The 

system could detect fluorescence and convert it to photocurrent, the detection limit is approximately 32 ng 

mL-1. [S3] An improved magnetic beads (MBs)-based fluorescence immunoassay method has been 

established by gold nanoparticles caused the fluorescence quenching of fluorescence in isothiocyanate. The 

detection limit for α-fetoprotein (AFP) assay is 8.5 ng mL-1. [S4] Another fluorescence quenching 
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immunoassay method based on fluorescence quenching effects of gold nanoparticles for fluorescence in for 

human IgG detection has also been established. The fluorescence intensity of fluorescence is inversely 

proportional to the logarithm of the concentration of human IgG with a detection limit of 4.7 ng mL−1.[S5] 

Furthermore, by combining the superior signal brightness and high photostability of quantum dots, a portable 

fluorescence biosensor for protein biomarker has been developed. Under optimal conditions, this sensor 

displays rapid responses for nitrated ceruloplasmin with a detection limit of 1.0 ng mL-1. [S6] A more facile 

magnetic beads (MBs)-based time-resolved fluoroimmunoassay method has been successfully established and 

applied to the determination of tumor markers in human serum. Europium chelates are used to label antibody 

and generate a fluorescence and the detection limit is obtained to be 0.5 ng mL−1 for carcinoembryonic 

antigen (CEA) assay. [S7] Utilizing tyrosinase catalyzing the fluorescence quenching of dopamine 

(DA)-functionalized CdSe/ZnS quantum dots (QDs), a novel fluorescence quenching immunoassay method 

has also been established, and the detection limit is same to the above method. [S8] To explore more sensitive 

fluorescence immunoassay method, single wavelength excitation fluorescence cross-correlation spectroscopy 

is applied to the immunoassay of AFP. Fluorescent CdSe/ZnS quantum dots and the fluorophore Alexa Fluor 

488 are used to label the antibodies. With these techniques, the limit of detection is reduced to 0.14 ng mL-1. 

[S9] By utilizing amino-modified Mn-doped ZnS quantum dots (QDs) as solid supports, a direct fluorescent 

immunoassay is developed based on a fluorescent molecularly imprinted polymer (MIP), which is generated 

fluorescent turn-on by recognition with tumor biomarker. Thus, this detection method could allow the 

detection limit of CEA down to 0.04 ng mL-1. The detection limits resulting from our method for AFP and 

C-reactive protein (CRP) are found to be 70 pg mL−1 and 30 pg mL−1, respectively. Therefore, compared to 

these reported fluorescent immunoassay methods, our method shows higher sensitivity and lower 

fluorescence background. 
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Table S1. Comparison of fluorescence immunoassay for protein biomarkers with different 

Fluorescence labeled materials 

Fluorescence labelled materials Target 

analytes 

Liner range 

(ng·mL−1) 

LOD 

(ng·mL−1) 

Ref. 

CdSe/ZnS quantum dot HSA 200-2.0×105 32 [S3] 

fluorescein isothiocyanate AFP 15-400 8.5 [S4] 

fluorescein human IgG 10-5000 4.7 [S5] 

quantum dots Nitrated 

ceruloplasmin 

1-10000 1.0 [S6] 

Europium chelates CEA 1.0-1000 0.5 [S7] 

CdSe / ZnS quantum dots AFP 0.5-500 0.5 [S8] 

CdSe/ZnS quantum dots AFP 1.4-250 0.14 [S9] 

Amino-modified Mn-doped 

ZnS quantum dots 

AFB1 0.05-10 0.048 [S10] 

Without labels CEA 0.1-100 0.04 [S11] 

This work AFP (CRP) 0.1-10 0.07 (0.03)  

 

9. The 1H NMR, 13C NMR and MS characterization of target compounds and intermediates 

 

Figure S9. 1H NMR spectrum of compound 1. 
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Figure S10. 13C NMR spectrum of compound 1. 

 

Figure S11. Mass spectrum of compound 1. 
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Figure S12. 1H NMR spectrum of probe. 

 

Figure S13. 13C NMR spectrum of probe. 
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Figure S14. Mass spectrum of probe. 
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