Supplementary Data

3,3'-Diindolylmethane stimulates exosomal Wnt11 autocrine signalling in human umbilical cord mesenchymal stem cells to enhance wound healing

Hui Shi^{1, 3}, Xiao Xu^{1, 3}, Bin Zhang^{1, 3}, Jiahao Xu¹, Zhaoji Pan¹, Aihua Gong¹, Xu Zhang¹, Rong Li¹, Yaoxiang Sun¹, Yongmin Yan¹, Fei Mao¹, Hui Qian¹, Wenrong Xu^{1, 3}

 ¹ Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, P. R. China;
² The Affiliated Hospital, Jiangsu University, Zhenjiang, Jiangsu, P. R. China;
³ These authors contributed equally to this work.

Contact: Wenrong Xu, Ph D. M D, Professor, School of Medical Science and Laboratory Medicine, Jiangsu University, 301 Xuefu Road, 212013, Tel: +86 511 85038215, Fax: +86 511 85038483, E-mail: icls@ujs.edu.cn; Hui Qian, Ph D. M D, Professor, School of Medical Science and Laboratory Medicine, Jiangsu University, 301 Xuefu Road, 212013, Tel: +86 511 85038334, Fax: +8651185038483, E-mail: lstmmlst@163.com

Figure S1. The effects of 50 µM DIM on HaCAT cells.

(a): HaCAT and DFL cells were treated with 50 μ M DIM for 48 h and 0.1% DMSO as the control. The colony-forming assay was conducted to detect the proliferative capacity of skin cells. (b): Western blot for stemness markers in HaCAT and DFL cells after 50 μ M DIM for 48 h. (c): Real-time PCR for the mRNA level of stemness markers and Wnt11 in HaCAT and DFL cells after 50 μ M DIM for 48 h. (d):Representative images of the burned spot of rat skin and H&E staining.

(a): The MTT assay was conducted to show the effect of 50 μ M DIM on the proliferation of gastric cancer cell lines SGC-7901, HGC-27, and hucMSCs for 48 h. The IC₅₀ was calculated. (b): Western blot for stemness markers in SGC-7901, HGC-27, and hucMSCs after 50 μ M DIM for 48 h.

Figure S3. The effects of 20 μM/mL ICG001 on DIM-hucMSCs. (a): The growth curve of hucMSCs,DIM-hucMSCs and ICG001 treated DIM-hucMSCs. (b): Cell cycle analysis of hucMSCs and ICG001 treated DIM-hucMSCs.

Figure S4. Luminex assay for secreted proteins and factors .

(a): HucMSCs were treated with 0.1% DMSO, 50 μ M DIM, and ICG001(20 μ M/mL), and the CdM was collected for the Luminex assay.

Figure S5. The effects of Wnt11 overexpression on Wnt/ β -catenin activation. (a): Real-time PCR to detect the mRNA level of Wnt11. (b): Western blot for the expression level stemness markers Oct4,Nanog and Wnt11, β -catenin.(c):Wnt reporter activity assay to detect the Wnt/ β -catenin activation.

Particle Size/ Concentration

Particle Size/ Concentration

Figure S6. Characterization of exosomes from in vitro cell culture.

(a): Representative TEM image of exosomes extracted from hucMSCs treated with DIM and 0.1% DMSO as the control. Scale bar = 50 nm. (b): The exosome amount and size distribution were analysed using the NanoSight LM10 (Malvern) microscope. Exosome preparations (isolated from 50 mL CdM) were diluted 1:1000 with H₂O for tracking. Each

sample was analysed three times for 30 seconds.

Score	Epidermal and dermal regeneration	Cell infiltration	Granulation tissue
1-3	Minimal to moderate re-epithelialization	Wound covered with	Granulation around wound
	with or without minimal developing	thin to moderate cell	edges only
	glandular structure formation in the	layer	
	wound		
4–7	Complete re-epithelialization with	Wound covered with	Granulation around wound
	minimal developing glandular structure	thick cell layer	edge and in 30%–50% of
	formation in the wound		wound bed
8-10	Complete re-epithelialization with	Wound covered with	Thick granulation around
	considerable developing glandular	very thick and densely	wound edge and in \geq 50%
	structure formation in the wound	populated cell layer	of wound bed

Supplementary Table 1. Crieria for histological scores

Supplementary Table 2. Sequences of real-time PCR primers

mRNA	Primer	Sequences (5'-3 ')	Annealing	Fragment
			temperature	size
Human-Sox2	Forward primer	ACACCAATCCCATCCACACT	60°C	224bp
	Reverse primer	GCAAACTTCCTGCAAAGCTC		
Human-Oct4	Forward primer	TTGAGGCTCTGCAGCTTAG	60°C	285bp
	Reverse primer	GCCGGTTACAGAACCACAC		
Human-Nanog	Forward primer	CCTGATTCTTCCACCAGTCC	60°C	292bp
	Reverse primer	TGCTATTCTTCGGCCAGTTG		
Human-Sall4	Forward primer	TCGATGGCCAACTTCCTTC	62°C	142bp
	Reverse primer	GAGCGGACTCACACTGGAGA		
Human-Wnt1	Forward primer	GATCGTCAACCGAGGCTGTC	64°C	115bp
	Reverse primer	CGTGCAGGATTCGATGGAAC		
Human-Wnt2	Forward primer	AGCTGGCAGGAAGGCTGTAA	63°C	91bp
	Reverse primer	CAGCCAGCATGTCCTGAGAG		
Human-Wnt3	Forward primer	GGCGCCTCTTCTAATGGA	60°C	188bp
	Reverse primer	AGAAGCGCAGTTGCTTGG		
Human-Wnt3a	Forward primer	GGCATGATCTCCACGTAGTT	632	167bp
	Reverse primer	TACTCCTCTGCAGCCTGAAG		
Human-Wnt4	Forward primer	GCGAGCAACTGGCTGTACCT	64°C	119bp
	Reverse primer	AGGTTCCGCTTGCACATCTG		
Human-Wnt5a	Forward primer	CTCGCCATGAAGAAGTCCA	592	157bp
	Reverse primer	TACCTAGCGACCACCAAGAA		
Human-Wnt6	Forward primer	GACGCATCCTGCAACAGGAC	65°C	106bp
	Reverse primer	AGCAGCTCGCCCATAGAACA		
Human-Wnt7b	Forward primer	CGAAGCGGAACTGGTACTGG	64°C	177bp
	Reverse primer	TGAAGCTCGGAGCACTGTCA		
Human-Wnt10b	Forward primer	GGCGCCAGGTGGTAACTGAA	66°C	178bp
	Reverse primer	GCTCCAGAATTGCGGTTGTG		
Human-Wnt11	Forward primer	ACAAGACAGGCAGTGCAACA	61°C	135bp
	Reverse primer	ACGTAGCAGCACCAGTGGTA		
Rat-collagen ⊡α1	Forward primer	GCATGGCCAAGAAGACATCC	64°C	115bp

	Reverse primer	CGTGCCATTGTGGCAGATAC		
Rat-collagen 2 α1	Forward primer	TGGCACAGCAGTCCAATGTA	60°C	85bp
	Reverse primer	GGTTCTGGCTTCCAGACATC		
Human/ Rat-β-actin	Forward primer	GACCTGTACGCCAACACAGT	59°C	129bp
	Reverse primer	CTCAGGAGGAGCAATGATCT		