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Figure S1. Properties of magnetic nanoparticles NITmagoldCit 50 nm, Nanoimmunotech, Spain. 

(A) Scanning electron microscopy of aptamer modified GMNPs (1); absorbance (2); magnetic 

circular dichroism (3) before the experiment.  

(B) Scanning electron microscopy (1); high-resolution transmission electron microscopy (2); 

absorbance from product datasheet.  

 

https://en.wikipedia.org/wiki/High-resolution_transmission_electron_microscopy


 

Figure S2. Distribution of iron and gold ions in organs after intravenous injection of AS-

14GMNPs in 100 μL DPBS (1.6 μg kg-1) determined by electron microscopy (EM). Spectral 

analyses of iron and gold content in AS-14-GMNPs (A); thin section of the intact tumor tissue (B); 

tumor after 1 (C), 5 hours (D) and 24 hours (E) after intravenous injection of AS-14-GMNPs; liver 

(F), kidneys (G), and urine (H) 1 hour after injection of AS-14-GMNPs. Inserts - contrast EM of 

the correspondent sample. 

 

 



The mechanical action of the magnetic particles on cells 

If a magnetite particle has a spherical shape of radius 𝑅𝑝, then its magnetic moment in a uniform 

external magnetic field 𝐻⃗⃗ 0 equals to 

𝑑 = 4𝜋𝑅𝑝
3
𝜇 − 1

𝜇 + 2
𝐻0, 

where μ - relative magnetic permeability, which value for magnetite is close to 5 according to the 

data [3]. This formula follows from the known exact solution for the problem of magnetization of 

a homogeneous ball [2]. Magnetic moment of a ball is directed along the field 𝐻⃗⃗ 0, and therefore 

no torque appears. Any field inhomogeneity leads to magnetophores that we do not consider here. 

The shape of our magnetic particles is substantially different from a ball. In such a case, the 

magnetic moment is large, if the body is elongated along the field 𝐻⃗⃗ 0, and small for another 

orientation. For bodies of particular shapes, these parameters can be calculated. We assume that 

our particle is a prolate ellipsoid of revolution, and the long half-axis 𝑎 = 12 nm is twice longer 

than the short ones 𝑏 = 6 nm. The exact solution for the problem of magnetization of the ellipsoid 

is known [2]. For μ = 5 it gives the magnetic moments in the direction of elongation and normal 

one 

𝑑1,2 ≈ (1 ± 0.17)8𝑎𝑏2𝐻1,2. 

If there is an angle 𝜗 between the magnetic field 𝐻⃗⃗ 0and the direction of elongation of the body, 

the magnetic moment is not parallel to the field. The projections of the moment on the field 𝐻0 

and normal to it equal  𝑑1 cos 𝜗  and  𝑑2 sin 𝜗. Hence, there is a torque 

𝑁 = (𝑑1 − 𝑑2)𝜇0𝐻0 sin(𝜗) cos(𝜗) ≈ 1.4𝜇0а𝑏
2𝐻0

2 sin(2𝜗), 

where 𝜇0 - magnetic permeability of vacuum. If the magnetic field strength 𝐻0 = 8 kA/m, which 

corresponds to 100 Oe, the torque depending on the angle 𝜗  can reach 0.5 ∙ 10−22 N∙m.  

Figure 3 is a diagram of the mechanical interaction of the magnetic particle with the cell. We use 

superparamagnetic particles which are covered by a thick layer of gold, so that from the outside 

they look like balls of radius 𝑅𝑝 = 25 nm. Their surface is covered with aptamers which cling to 

fibronectin filaments located in the intercellular space. These filaments are attached at their ends 

to integrins located in cell membranes. We approximately simulate the filaments as inextensible 

ones and we consider integrins as solid cylinders of radius 𝑅 = 2 nm. 

When under the influence of the magnetic field the particle is rotated clockwise, as shown in Figure 

3, it pulls the left filament up and pulls the right one down. The left filament above the particle can 

be bent, and therefore does not transmit efforts at its upper end. The lower part of this filament 

pulls integrin with the force 𝐹 . Similarly, the right filament does not act on the integrin shown in 

Figure 3, but pulls the other integrin, located somewhere above the drawing area. 

For evaluation of the elastic forces generated by pulling integrin to the height ℎ, we approximately 

assume that all the elastic forces are determined by deformation of the membrane. According to 

[1] the mammalian cell membranes in the normal state are stretched so that the order of magnitude 

of the tension 
510  N/m. It may be noted that this tension of the membrane is balanced by the 

pressure inside the cells increased by 2 / cP R   as compared with the pressure in surrounding 

environment. For the cells with radius 10cR  𝜇m, this difference 2P  P. 



We are interested in the phenomenon with a scale much smaller than the radius of the cell cR . So 

we neglect the curvature of the membrane. We consider a thin membrane, and we suppose that it 

is fixed at the circle of some large radius R . In our model the integrin looks like a solid circle of 

radius R  centered at the same point as the center of the selected circle of the membrane. 

This object is rotationally symmetric. Hence, we use the polar coordinates ,r   of the points in 

the plane of the non-deformed membrane. Points do no move in direction of   because of the 

symmetry.  For small strains the displacement in direction of r  has a higher order of smallness 

than the deflection in the direction normal to the membrane. The latter is denoted as ( )w r . 

Therefore, the displacement of the membrane points is described by one function ( )w r . The 

following boundary conditions correspond to the rise to the height h  at the circle r R  and zero 

displacement at r R  

( ) , ( ) 0w R h w R  .      (1) 

The membrane takes such a form that the elastic energy J  reaches a minimum. In our case of axial 

symmetry in accordance with [4], we have 

                                                 

2R

R

dw
J rdr

dr




 
  

 
 .   

The condition of its minimum is the equation 

                                                     
1

0
d dw

r
r dr dr

 
 

 
.  

Its solution is the function 

( ) ln ( / )w r A r B ,  

where ,A B  - arbitrary constants. Their values can be found from the boundary conditions (1). The 

result is 

                                                  ( ) ln ( / r) / ln ( / )w r h R R R  .                 (2) 

The graph of this solution is shown in qualitative manner in Figure 3. 

Such a membrane is inclined relative to the plane at the angle  , such that 

 
( ) 1

( ( ))
ln ( / R)

dw r h
tg r

dr R r





  .               (3)  

This slope on the border with the solid circle defines the force with which the membrane draws 

the circle dawn in the vertical direction 

2 sin 2 / ln ( / )F R h R R       .                (4) 

The formula is simplified for small angle  , when sintg     . This expression contains one 

parameter R , whose value we have identified only by the inequalities 

      cR R R .  

The uncertainty of R  can be solved only within a more general model that takes into account 

spherical membrane. We do not do this, since the logarithm ln ( / )R R  in (2-4) is only slight 



varied when R  changes in a wide range. Take the seemingly reasonable average value 

150cR R R    nm when ln ( / ) 4R R  . Expression (4) reduces to 

    1.5F h .                                                            (5) 

The maximum value of torque 
220.5 10N   N∙m due to the magnetic field acting on the magnetic 

particle was obtained above. It is easy to show that since we use low frequencies, the inertia during 

the rotation of the particle can be neglected. The friction of the surrounding liquid is more 

important, but the friction torque is also a few orders of magnitude smaller than the torque N . 

Therefore, the pair of the elastic force (5) and having the same module elastic force applied to the 

right-hand filament in Figure 3, balances the torque N . It gives the equality 

3 pN h R , 

that permits to evaluatethe height to which integrins can be drawn by the magnetite particles which 

we use, 0.07h  nm. Possibly, the angle 
0( ) 0.5R   of rotation of the membrane in the place of 

its attachment to the integrin (3) is of value. The force (5), that pulls the integrin from the 

membrane can be up to 
1510F   N. It can be mentioned that the magnetic particle rotates / ph R  

angle that is of about 
00.15  when 0.07h  nm. 

Note that these values of ,h F  are obtained only for the magnetic particles oriented in a certain 

way with respect to the direction of the external magnetic field 𝐻⃗⃗ 0. Since the particles when 

attached to the cells are randomly oriented, the specified parameter values ought to be reduced 

several times to estimate the average impact on a cell. 

The obtained limit values could be achieved when varying over time magnetic field 𝐻⃗⃗ 0 has 

amplitude value, that occurs twice during the period. The frequency is 50 Hz in our experiments. 

When the magnetic field 𝐻⃗⃗ 0 is reversed, the magnetic moment of each magnetite particle does the 

same. The torque keeps sign since it equals to their vector product. Consequently, during both half 

cycles the particle rotates in the same direction when the field strength increases, and returns to its 

free position when the field is weakened. Therefore, during 0.01  sec integrin is pulled out of the 

cell to a height about 0.07  nm and returns to its original position. Perhaps, just these twitches with 

frequency 100 Hz damage cells in our experiments, whereas the stationary membrane 

deformations of the same scale could be not so effective. 

Heating  

Let us show that the thermal energy released in magnetic particles is distributed throughout the 

liquid. In our experiments, the particles have a concentration of the order of 1410 m
3
, so the 

distance between adjacent particles 52 10L  m. By the heat conduction equation typical time of 

heat propagation for the distance L  is assessed as 

2C
L


 , 

where C  - heat capacity  - thermal conductivity. For water, 64.2 10C  J/(m
3
K), 0.6  W/(m

K). We get the characteristic time  0.003 seconds. Such a small   ensures uniform heating 

throughout the liquid and particles, not only for total time of the experiment 10t   minutes, but 

even during the period of the magnetic field variation that equals 1/ f   0.02 seconds. 



First, we study the heating of the metal particles in an alternating magnetic field. 

In our experiments, we use an alternating magnetic field with a strength of about 100 Oe or 8 

kA/m, that corresponds to the magnetic induction 𝐵 = 0.01 T. This field varies with time at a 

frequency 𝑓 = 50 Hz. 

Living cells and magnetic particles can be in different liquids. All of these liquids have salinity 

not exceeding seawater salinity. Therefore, to estimate maximum effect, consider seawater which 

conductivity is 𝜎𝑙 = 3 S/m. The main part of the used magnetic particles takes gold which 

conductivity is 𝜎𝑝 = 0.5 ∙ 107S/m. 

The nature of the influence of the alternating magnetic field on a substance is determined by such 

a parameter as the thickness of the skin layer 𝛿 = 1/√𝜋𝜎𝜇0𝑓, and 𝛿𝑙 = 40 m for the liquid and 

𝛿𝑝 = 1 cm for gold. Here 𝜇0 is magnetic permeability of vacuum. Because these parameters are 

many orders of magnitude greater than the characteristic size of the region occupied by the liquid, 

and the size of the particles, respectively, the magnetic field freely permeates without being 

distorted into the liquid and into the particles. 

By virtue of the law of electromagnetic induction the variation of the magnetic field creates a 

vortex electric field 𝐸⃗  which satisfy the equation 

                                            ∮ 𝐸⃗ 𝑑𝑙 =
𝜕

𝜕𝑡
∫ 𝐵⃗ 𝑑𝑠 ,                                                                            (6) 

where the integration in the left side is made over an arbitrary closed circuit, and in the right side 

- over the surface bounded by this circuit, 𝑡 - time. 

To simplify estimates, assume that liquid occupies a region which is symmetric with respect to 

rotation about the same axis as that of the solenoid which generates a magnetic field. The magnetic 

field is assumed homogeneous, and its induction is defined as 𝐵 cos(2𝜋𝑓𝑡). Then the electric field 

is also axially symmetric and has only an azimuthal component −𝐸 sin(2𝜋𝑓𝑡), and the integration 

in (6) for a circle of radius 𝑟 is simple. Get 

−2𝜋𝑟𝐸 sin(2𝜋𝑓𝑡) =
𝜕

𝜕𝑡
(𝐵 cos(2𝜋𝑓𝑡) 𝜋𝑟2). 

We express E, and for all points of the fluid at a distance of less than 5 mm from the axis, we 

obtain the estimate 

                                                         𝐸 = 𝑟𝜋𝑓𝐵 < 0.01 V/m. 

The electric current produced by this field has a density 𝑗 = 𝜎𝑙𝐸 < 0.03 A/𝑚2, and is accompanied 

by Joule dissipation which density equals 𝑗𝐸 = 𝜎𝑙𝐸
2 < 3 ∙ 10−4 W/𝑚3. This energy heats the 

liquid. The temperature rises from the initial value 𝑇0 to 

𝑇 = 𝑇0 + 𝑡 ∙ 𝑗𝐸/𝐶, 

after the time 𝑡. C - heat capacity per unit volume. For water, 𝐶 = 4.2 ∙ 106 J/(K∙𝑚3). For 𝑡 = 10 

minutes the temperature is increased by 

                                                             𝑇 − 𝑇0 < 5 ∙ 10−8К,                                                       (7) 

that is negligible. 



Now consider the heating of the gold ball, placed in the liquid. Since the radius of the ball, 𝑅 = 25 

nm, is much smaller than the distance between the balls, each ball can be considered separately, 

as being in an infinite domain with a uniform electric field with strength 𝐸⃗ , which module is 𝐸. 

We know the exact solution of this problem of electrical conductivity. The electric potential 𝑉 in 

spherical coordinates 𝑟, 𝜗, 𝜑, with the axis 𝜗 = 0 directed along 𝐸⃗ , has the form 

𝑉 = {
−𝐸𝑝𝑟 cos 𝜗 ,                𝑟 < 𝑅

(𝐴/𝑟2 − 𝐸𝑟) cos 𝜗 ,   𝑟 > 𝑅,
 

where the constants 

𝐴 = 𝐸𝑅3(𝜎𝑝/𝜎𝑙 + 1)/(𝜎𝑝/𝜎𝑙 + 2), 

𝐸𝑝 = 3𝐸/(𝜎𝑝/𝜎𝑙 + 2). 

Linear dependence of the electric potential on the coordinate 𝑧 = 𝑟 cos 𝜗 inside the ball means a 

uniform electric field with strength 𝐸𝑝 ≈ 3𝐸𝜎𝑙/𝜎𝑝, because 𝜎𝑝/𝜎𝑙 ≫ 1. Accordingly, the density 

of Joule dissipation inside the ball equals 𝜎𝑝𝐸𝑝
2 ≈ 9𝐸2𝜎𝑙/𝜎𝑝, that differs 9𝜎𝑙/𝜎𝑝 ≪1 times from 

dissipation in the liquid. The electric field strength in the vicinity of the ball as compared to 𝐸 do 

not increase more than threefold, and returns to the value 𝐸 with the distance from the ball. 

Accordingly, the density of Joule dissipation increases only in a small neighborhood of the ball 

and no more than 9 times. 

Thus, the ball with high electric conductivity increases heating of some surrounding liquid, while 

the ball itself heats much less than liquid would be heated without it. The heating is negligible in 

view of the inequality (7).  

One more important mechanism of energy transfer from the magnetic field to the medium is the 

work done by rotating particles. 

Upon rotation of the particle the magnetic field does work A N  , where   - the angle of 

rotation, N  - torque. Above, we obtain an estimate 00.15 0.003  radians. It was used the 

assumption that fibronectin filaments may be regarded as inextensible ones. If, on the contrary, 

they are easily stretched, they have virtually no influence on the rotation of the particles, which 

would turn to the ellipsoid orientation along the magnetic field, therefore,   may be of the order 

of one radian. Of course, in such a case the cell membrane is not deformed, and all resistance 

would be determined by a rotation viscosity of the liquid. To evaluate the work from above, we 

use the limit 1  radian and obtain A N . All this work is ultimately converted into heat. The 

particle has a volume much smaller volume of fluid surrounding it, and this thermal energy is 

rapidly distributed throughout the liquid. Therefore, the law of conservation of energy can be 

written as 

3

0( ) 2C L T T f t A  ,    

where the frequency f  is doubled, as the turns occur twice in the period of the field variation, and 

each time the magnetic field does the work A . Substituting the above estimates A N , 

220.5 10N    N∙m, obtains an estimate of the temperature change 

10

0 3

2
10

f N
T T t K

CL

  .        (8) 



This heating is negligible. 

Another heating mechanism is associated with losses in reverses of magnetization of particles. 

Hysteresis for the magnetite particles is so small that it is difficult to find the magnetization curves 

at the amplitude of the field 
0 100H  Oe = 8 kA/m, as in our experiments. Upper estimate can be 

obtained using the curves plotted in [3] at the amplitude of the field around 3000 Oe. The 

difference per unit mass of the magnetization with increasing and decreasing field is of about 2 A

m/kg. For magnetic density of about 5000 kg/m 3 , we get 410M  A/m. The hysteresis loop at 

low fields is definitely inside the loop obtained for large amplitude of the field, so its area 

02HdM MdH H M    . 

The heat release in each cycle of magnetization is obtained by multiplying by the volume of the 

magnet and by 
0 . We get energy 

2 22

0 0

4
2 4 10

3
ab H M    J. 

Since this energy is four times more than the energy dissipation of turning particles, heating also 

increases four times compared with (8), and hence it is also negligible. This is consistent with the 

statement [3] about the possibility to neglect by hysteresis. 

The same article [3] also considered other mechanisms of medium heating due to exposure to a 

magnetic field, such as Néel and Brownian relaxations. We do not analyze them in detail, and use 

the obtained theoretical estimates in [3], backed up by their experimental data. For magnetite 

particles with similar particle sizes in the field 
0 150H  Oe varying with frequency 100 kHz the 

total heat release does not exceed 50 kW/kg. Their data demonstrate a linear dependence of the 

frequency and quadratic dependence of 
0H . Under our 50f  Hz and 

0 100H  Oe we receive less 

than 10 W/kg. The mass of our magnetic particle is of about 10
20

kg. Thus, the released thermal 

energy is of about 1910 W or 2110 J per half-cycle of the magnetic field variation. 

Since this energy is 10 times more than the energy dissipation of turning particles, heating is also 

increased 10 times as compared with (8), and hence it is also negligible. 

Absence of heating in our experiments, as opposed to experiments on hyperthermia, is due to a 

lower magnetic field frequency and the smallness of the concentrations of magnetite particles. Our 

values of these parameters are three and eight orders of magnitude, respectively, less compared 

with the parameters used in [3] when a substantial heating was observed, up to 10 K per hour. 

Thus, the alternating magnetic field has no thermal effect on the cells in our experiments. 
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