## SUPPLEMENTARY INFORMATION

Xiaobo Yu<sup>1\*\*</sup>, Lusheng Song<sup>2\*\*</sup>, Brianne Petritis<sup>2</sup>, Xiaofang Bian <sup>2</sup>, Haoyu Wang<sup>2</sup>, Jennifer Viloria<sup>2</sup>, Jin Park<sup>2</sup>, Hoang Bui<sup>2</sup>, Han Li<sup>2</sup>, Jie Wang<sup>2</sup>, Lei Liu<sup>1</sup>, Liuhui Yang<sup>1</sup>, Hu Duan<sup>1</sup>,David N. McMurray<sup>3</sup>, Jacqueline M. Achkar<sup>4</sup>, Mitch Magee<sup>2</sup>, Ji Qiu<sup>2</sup> and Joshua LaBaer<sup>2\*</sup>

<sup>1</sup>State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (PHOENIX Center, Beijing), Beijing Institute of Radiation Medicine, Beijing, 102206, China

<sup>2</sup>The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA

<sup>3</sup>Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.

<sup>4</sup>Department of Medicine, Albert Einstein College of Medicine, NY 10461, USA ; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

<sup>\*</sup>These authors contributed equally to this work.

\*Correspondence should be addressed to X.Y. (yuxiaobo@mail.ncpsb.org ) and J.L. (Joshua.Labaer@asu.edu)

## **Supplemental Methods**

#### Screening for protein-specific antibodies with protein microarrays

We collected 45 antibodies targeting 32 proteins from a various sources (see also Materials and Methods) and tested their binding specificity on NAPPA and M-NAPPA arrays. We printed the gene plasmids encoding for those proteins on small NAPPA and M-NAPPA arrays. After protein expression using a human cell-free expression system, the arrays were incubated with antibodies diluted 1:200 or 1:300 for 1 hour at room temperature. After washing three times with PBST, antibodies that were bound to their target proteins on the array were detected by their corresponding fluorescein-labeled IgG secondary antibodies. The data were calculated using the ratio of fluorescent intensity of proteins divided by the negative control spot, which contained only the printing mixture with no plasmid cDNA (**Figure S1**). Collectively, we found 8 antibodies {IA-2 (106 kDa), GAD2 (65 kDa), Clusterin (52 kDa), p53 (44 kDa), Fos (40 kDa), PP2A (36 kDa), SFN (28 kDa) and BCL2L2 (20 kDa)} that specifically recognized their target proteins on NAPPA arrays.

## **Supplemental Tables**

**Table S1.** Percentage of hits identified from the HT screening in previously published

 reports.

| Classification            | Species     | Method                                                                                                       | Total<br>proteins | Hits | Hit<br>rate(%)         | Verification                                         | Year     | PMID     |
|---------------------------|-------------|--------------------------------------------------------------------------------------------------------------|-------------------|------|------------------------|------------------------------------------------------|----------|----------|
| Protein<br>function       | Arabidopsis | HaloTag-NAPPA human protein microarray                                                                       | 12,000            | 59   | 0.49                   | in vitro and vivo protein-protein interaction assays | 2016     | 27357687 |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 10,000            | 19   | 0.19                   | in vitro and vivo protein-protein interaction assays | 2015     | 25739981 |
|                           | E.coli      | E.coli proteome microarray                                                                                   | 4,256             | 4    | 0.09                   | in vitro and vivo acetylation assays                 | 2015     | 26716769 |
|                           | Human       | Human protein microarray                                                                                     | 16,368            | 360  | 2.20                   | in vitro and vivo functional assays                  | 2015     | 26598702 |
|                           | Human       | Human protein microarray                                                                                     | 58                | 1.38 | in vitro kinase assays | 2015                                                 | 26109723 |          |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 10,000            | 20   | 0.20                   | in vitro and vivo AMPylation assays                  | 2014     | 25073739 |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 10,000            | 11   | 0.11                   | in vitro and vivo protein-protein interaction assays | 2014     | 24955142 |
|                           | Human       | Human protein microarray                                                                                     | 2,236             | 29   | 1.30                   | in vitro kinase assays                               | 2013     | 24023761 |
|                           | Yeast       | Yeast proteome microarray                                                                                    | 5,800             | 91   | 1.57                   | in vitro activity assays                             | 2009     | 19303850 |
|                           | Human       | Human protein microarray                                                                                     | 8000              | 324  | 4.05                   | ELISA                                                | 2011     | 21244100 |
|                           | Yeast       | Yeast         Yeast proteome microarray         4200         9         0.21         in vitro activity assays |                   |      |                        |                                                      | 2011     | 21460040 |
| Autoantibody<br>biomarker | Human       | NAPPA human protein<br>microarray                                                                            | 10,000            | 17   | 0.17                   | RAPID-ELISA                                          | 2016     | 26896032 |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 10,000            | 6    | 0.06                   | RAPID-ELISA                                          | 2016     | 27690455 |
|                           | Human       | Human protein microarray                                                                                     | 16,368            | 17   | 0.10                   | Small protein array                                  | 2016     | 26598640 |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 10,000            | 748  | 7.48                   | NAPPA array                                          | 2015     | 26070530 |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 10,000            | 741  | 7.41                   | RAPID-ELISA                                          | 2015     | 25365139 |
|                           | Human       | Human protein microarray                                                                                     | 17,000            | 211  | 1.24                   | None                                                 | 2015     | 26370624 |
|                           | Human       | Human protein microarray                                                                                     | 17,000            | 137  | 0.81                   | Small protein array                                  | 2015     | 25954975 |
|                           | Human       | Human protein microarray                                                                                     | 11,520            | 51   | 0.44                   | Bead based array                                     | 2013     | 23732997 |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 4,388             | 71   | 1.62                   | Immunoblot                                           | 2012     | 22311593 |
|                           | Human       | NAPPA human protein<br>microarray                                                                            | 4,988             | 761  | 15.26                  | NAPPA array                                          | 2011     | 20977275 |
|                           | Human       | Human protein microarray                                                                                     | 10,846            | 14   | 0.13                   | Bead based array                                     | 2016     | 27206786 |
|                           | Human       | Human protein microarray                                                                                     | 3,786             | 161  | 4.25                   | Bead based array                                     | 2016     | 27700103 |
|                           | Human       | Human protein microarray                                                                                     | 3,072             | 131  | 4.26                   | Bead based array                                     | 2015     | 25608002 |

|   | Human | Human protein microarray | 3,840  | 373 | 9.71 | Bead based array    | 2014 | 25227461 |
|---|-------|--------------------------|--------|-----|------|---------------------|------|----------|
| _ | Human | Human protein microarray | 17,000 | 23  | 0.14 | Small protein array | 2012 | 22647870 |
| _ | Human | Human protein microarray | 5056   | 38  | 0.75 | ELISA               | 2011 | 21183621 |

 Table S2. Hits identified from viral M-NAPPA arrays.

| No | Name                                                    | Ratio[Rb1/Control]* | ring<br>score |
|----|---------------------------------------------------------|---------------------|---------------|
| 1  | EBV-EBNA3A, H3N2-HA, HCMV-US34, HPV18-E7, Adenovirus-IX | 2.7                 | 5.0           |
| 2  | EBV-BVLF1, SFV-E1, HCMV-US10, HCMV-UL36, HPV6-E7        | 2.7                 | 3.0           |
| 3  | EBV-BHLF1, H3N2-NS2, HCMV-UL88, HPV16-E7, SV40-Small t  | 2.5                 | 5.0           |
| 4  | EBV-BBLF1, H3N2-PA, HCMV-UL50, HPV16-E4, HPV33-E7       | 3.4                 | 5.0           |
| 5  | EBV-BARF0, H3N2-M1, HCMV-UL13, HPV18-E4, Adenovirus-E1A | 3.1                 | 5.0           |
| 6  | EBV-BALF2, H1N1-M1, HCMV-UL141, HCMV-UL38, HPV11-E7     | 2.5                 | 3.0           |

\* The ratio was calculated by using the normalized signal of Rb1-HaloTag to the negative control expressing only HaloTag fusion protein. Proteins that were considered to be potential antigens of diseases had a ratio higher than 2 and a ring score higher than 1.

**Table S3.** Hits identified from viral NAPPA arrays.

| No. | Name           | Ratio[Rb1/Control]* | ring score |
|-----|----------------|---------------------|------------|
| 1   | Adenovirus-E1A | 2.8                 | 5.0        |
| 2   | HPV11-E7       | 4.1                 | 3.0        |
| 3   | HPV16-E7       | 2.3                 | 5.0        |
| 4   | HPV18-E7       | 2.4                 | 5.0        |
| 5   | HPV33-E7       | 2.8                 | 5.0        |

\* The ratio was calculated by using the normalized signal of Rb1-HaloTag to the negative control expressing only HaloTag fusion protein. Proteins that were considered to be potential antigens of diseases had a ratio higher than 2 and a ring score higher than 1.

**Table S4.** Coefficient of variation (CV) and standard deviation (SD) of M-NAPPA andNAPPA protein array fabrication.

|                    |                | M-NA                   | <b>PPA</b> |       | NAPPA          |                |            |        |  |  |  |
|--------------------|----------------|------------------------|------------|-------|----------------|----------------|------------|--------|--|--|--|
|                    | Spot<br>number | Gene Mean<br>number CV |            | SD    | Spot<br>number | Gene<br>number | Mean<br>CV | SD     |  |  |  |
| Spot-to-<br>spot   | 32             | 80                     | 3.64%      | 3.27% | 160            | 80             | 7.63%      | 10.58% |  |  |  |
| Zone-<br>to-zone   | 64             | 80                     | 7.57%      | 3.41% | 320            | 80             | 12.13%     | 7.56%  |  |  |  |
| Slide-to-<br>slide | 128            | 80                     | 7.27%      | 4.00% | 640            | 80             | 13.25%     | 9.42%  |  |  |  |

**Table S5.** Coefficient of variation (CV) and standard deviation (SD) of protein-protein

 interaction assays.

|                  |                | M-NA                 | <b>APPA</b> |       | ΝΑΡΡΑ          |                      |            |       |  |  |
|------------------|----------------|----------------------|-------------|-------|----------------|----------------------|------------|-------|--|--|
|                  | Spot<br>number | Interact<br>ion pair | Mean<br>CV  | SD    | Spot<br>number | Interact<br>ion pair | Mean<br>CV | SD    |  |  |
| Spot-to-<br>spot | 10             | 5                    | 2.55%       | 2.56% | 10             | 5                    | 5.65%      | 2.69% |  |  |
| Zone-<br>to-zone | 20             | 5                    | 3.11%       | 3.46% | 20             | 5                    | 5.75%      | 3.86% |  |  |

## **Supplemental figures**

|             |      |         |          |         |                  |      |      | Antigen |      |        |          |      |          |        |       |       |       |
|-------------|------|---------|----------|---------|------------------|------|------|---------|------|--------|----------|------|----------|--------|-------|-------|-------|
| Name        | relA | Cluster | in PTPN6 | trkA    | CREB3            | AKT1 | MUCI | l Fos   | B    | CL2 G. | AD65 Jun |      | SERPINB3 | EBNA   | ELF5  | CHGA  | FGB   |
| relA        |      | .49     | 1.18 1   | .52     | 1.78 1           | 55   | 1.58 | 1.76    | 1.91 | 1.51   | 1.96     | 2.01 | 1.81     | 2.44   | 2.59  | 1.96  | 3.01  |
| Clusterin   |      | 1.56    | 3.62 1   | .57     | 1.69 1           | 68   | 1.82 | 1.41    | 1.40 | 1.43   | 1.39     | 1.17 | 1.88     | 1.60   | 1.44  | 1.94  | 2.40  |
| PTPN6_01    |      | 1.91    | 2.07     | .06     | 1.96 1           | 83   | 1.60 | 1.88    | 2.15 | 1.70   | 1.70     | 2.23 | 335      | 2.51   | 3.38  | 2.87  | 5.96  |
| PTPN6_02    | 1    | 2.29    | 2.96 1   | .99     | 2.49 2           | 30   | 1.21 | 2.03    | 2.70 | 1.93   | 2.09     | 0.95 | 2.19     | 1.96   | 3.25  | 2.68  | 2.42  |
| PTPN6_03    | 1    | 2.07    | 1.73 1   | .51     | 1.75 1           | 46   | 1.43 | 1.50    | 1.59 | 1.19   | 1.24     | 1.21 | 1.58     | 1.26   | 1.36  | 1.43  | 1.94  |
| trkA_01     | 1    | 2.04    | 2.45 1   | .66     | 2.20 2           | .09  | 1.58 | 2.18    | 2.37 | 1.58   | 1.87     | 1.62 | 2.00     | 2.04   | 3.70  | 2.70  | 3.46  |
| trkA_02     |      | 2.69    | 3.31 2   | .40     | 3. <b>69</b> 2   | .00  | 1.54 | 2.63    | 2.70 | 2.02   | 2.24     | 0.43 | 2.82     | 2.08   | 0.90  | 3.40  | 2.62  |
| CREB3       |      | 5.61    | 7.89 (   | 5.80 10 | 1.23 2           | 91   | 7.52 | 6.10    | 4.45 | 2.56   | 2.83     | 8.75 | 7.94     | 2.65   | 9.51  | 6.51  | 10.04 |
| Muc1_01     |      | .83     | 1.68 1   | .85     | 1.74 1           | 58   | 1.90 | 1.91    | 1.86 | 1.48   | 2.10     | 1.67 | 2.10     | 2.58   | 1.90  | 2.07  | 3.37  |
| Muc1_02     |      | 1.44    | 1.05 1   | .48     | 1.41 1           | 07   | 1.58 | 137     | 1.27 | 1.44   | 1.44     | 1.18 | 1.88     | 1.25   | 1.17  | 1.22  | 1.26  |
| Fos         |      | 3.75    | 3.30 2   | .32     | 3.04 2           | .73  | 2.76 | 2.51    | 9.10 | 1.51   | 1.75     | 2.95 | 3.22     | 1.52   | 1.15  | 2.40  | 2.15  |
| GAD65       |      | .64     | 2.16 1   | .17     | 1.58 1           | .72  | 1.03 | 1.46    | 1.74 | 1.38   | 2.48     | 0.94 | 1.72     | 1.58   | 0.96  | 1.91  | 151   |
| Jun         |      | 2.77    | 4.17 2   | .84     | 3.17 2           | 89   | 3.25 | 2.89    | 3.45 | 2.17   | 2.50     | 2.19 | 3.32     | 2.25   | 5.10  | 2.92  | 3.24  |
| SERPINB3_01 | -    | 2.44    | 2.13 2   | .09     | 2.33 1           | .84  | 2.07 | 2.00    | 2.38 | 1.94   | 1.76     | 2.86 | 4.96     | 2.05   | 2.67  | 2.36  | 2.84  |
| SERPINB3_02 | -    | 2.58    | 2.47 2   | .41 .   | 2.60 1           | 93   | 2.66 | 2.40    | 3.15 | 2.47   | 1.94     | 4.56 | 4.08     | 2.16   | 2.05  | 2.74  | 3.79  |
| SERPINB3_03 | -    | 2.39    | 1.69 1   | .54     | 2.19 1           | .72  | 1.79 | 1.85    | 2.16 | 2.54   | 1.82     | 2.92 | 533      | 2.16   | 2.85  | 235   | 3.28  |
| ELF5        | 1    | 2.30    | 2.21 2   | .49     | 3.27 1           | 60   | 2.29 | 2.48    | 2.27 | 1.88   | 2.03     | 1.00 | 2.59     | 1.82   | 1.38  | 2.57  | 2.47  |
| CHGA_01     | -    | 2.28    | 2.86     | .22 2   | 2.11 1           | 85   | 1.64 | 2.06    | 2.87 | 1.54   | 1.35     | 1.24 | 2.74     | 1.69   | 2.02  |       | 2.97  |
| CHGA_02     | -    | 2.63    | 4.28 2   | .57     | 1.02 3           | 22   | 2.20 | 4.49    | 4.42 | 2.68   | 3.43     | 432  | 3.30     | 3.97   | 7.12  | 4.48  | 5.90  |
| CHGA_03     |      | 3.13    | 2.30 1   | .50 2   | 2.37 1           | .48  | 1.10 | 2.03    | 1.95 | 1.34   | 1.78     | 1.18 | 1.57     | 2.00   | 2.34  | 2.29  | 2.45  |
| FGB         |      | 1.44    | 1.17 1   | .40     | 1.60 1           | .03  | 1.20 | 134     | 1.29 | 1.34   | 1.26     | 0.93 | 136      | 1.33   | 0.92  | 1.60  | 4.21  |
|             |      |         |          |         |                  |      |      |         | -    |        |          |      |          |        |       |       |       |
| Name        | GLOI | ANXAI   | FSCN     | CDK6    | SFN              | SHC3 | FGA  | PSA     | II G | PI LA  | IN PP2   | A    | BCLIO    | BCL2L2 | NFKBI | STX6  | CD79A |
| GLOI_01     |      | 1.03    | 1.35 1   | ./)     | 1.99 1           | .84  | 1.79 | 1.26    | 1.68 | 1.60   | 1.19     | 1.40 | 13/      | 1.32   | 1.84  | 1.82  | 1.52  |
| GLOI_02     |      | 1.0/    | 1.9/     | .09     | 1.70 2           | 25   | 1.27 | 1.00    | 2.1/ | 1.22   | 1.05     | 1.30 | 0.80     | 1.30   | 2.18  | 131   | 1./1  |
| GLOI_03     |      | 1.34    | 0.97     | .03     | 1.79 1           | .14  | 1.42 | 2.48    | 2.20 | 1.05   | 1.80     | 2.20 | 1./5     | 1.89   | 1.41  | 1.95  | 2.42  |
| ANAAI       |      | 1.39    | 1.82     | .95 .   | 2.19 2           | 04   | 2.30 | 1.50    | 1.38 | 1.91   | 1.01     | 1.25 | 1.44     | 1.40   | 1.00  | 1.88  | 1.43  |
| FSCNI_01    |      | 1.17    | 1.32     | .08     | 1.79 1           | 92   | 2.15 | 1.52    | 1.49 | 1.40   | 1.28     | 1.43 | 1.48     | 1.02   | 1.44  | 1.0/  | 1.47  |
| FSCNI 02    |      | 1.33    | 1 20     | 1.42    | 1.54 2           | 33   | 2.30 | 1.81    | 2.08 | 1.78   | 1.80     | 1.88 | 1.8/     | 1.91   | 1.89  | 2.13  | 1.80  |
| FSCNI_05    |      | 1.23    | 1.30 1   | 20      | 1.75 1           | 29   | 1.21 | 1.24    | 1.2/ | 1.82   | 1.13     | 1.47 | 1.12     | 1.41   | 1.23  | 1.0/  | 1.58  |
| CDA0        |      | 1.75    | 1.75     |         | 1 42 2           | 51   | 1.51 | 1.66    | 2.50 | 1.00   | 0.00     | 2.05 | 0.05     | 1.00   | 1.05  | 1.04  | 1.70  |
| SEN 02      |      | 1.04    | 0.04     |         | 2.40 0<br>1.50 1 | 50   | 1.43 | 1.00    | 1.51 | 1.94   | 1.00     | 1.20 | 1 20     | 1.80   | 1.15  | 1.80  | 1./9  |
| DEATL 01    |      | 1.0     | 2.07     | 4       | 1.02 1           | 25   | 1.50 | 1.07    | 1.01 | 2.10   | 1.29     | 1.52 | 1.50     | 1.52   | 1.40  | 2.42  | 2.41  |
| PSATI 01    | 5    | 0.40    | 2.46     | 16      | 2.09 3           | 72   | 2.00 | 1.07    | 2.95 | 2.19   | 1.44     | 2.58 | 1.00     | 2.20   | 2.13  | 2.42  | 1.41  |
| DEAT 03     | 1    | 0.50    | 2.40 2   | 10 1    | 2.05             | 17   | 2.10 | 1.00    | 8.00 | 2.41   | 1.45     | 2.02 | 1.02     | 2.10   | 2.00  | 2.20  | 1.07  |
| CPI 01      |      | 00      | 2.41 2   | 120 .   | 1.50 2           | 01   | 2.51 | 1.04    | 2.60 | 4.72   | 2.22     | 2.45 | 2.27     | 2.14   | 3.15  | 2.00  | 2.00  |
| CPI 02      |      | 1.50    | 2.50 2   | 25      | 0.66 1           | 00   | 2.60 | 1.54    | 2.05 | 2.05   | 1.06     | 1.00 | 2.00     | 2.30   | 2.57  | 2.34  | 1.50  |
| CPI 03      |      | 1.04    | 1.62 1   | 00 .    | 110 1            | 12   | 2.09 | 1.05    | 1.00 | 3.23   | 1.00     | 1.90 | 1.25     | 1.22   | 1 22  | 1 12  | 1.00  |
| IVN         |      | 1.20    | 1.02 1   | 07      | 1.12 1           | 70   | 2.50 | 1.00    | 2.61 | 2.20   | 1.45     | 1.02 | 1.46     | 1.22   | 2.56  | 2.15  | 206   |
| PP2A 01     |      | 00      | 1.99     | 01      | 157 1            | 70   | 2.00 | 1.02    | 2.01 | 2.29   | 1.69     | 1.55 | 1.40     | 1.72   | 2.30  | 1 0.4 | 2.00  |
| PP2A 02     |      | 1.74    | 1.60 1   | 60      | 0.01 1           | 20   | 2.25 | 1.90    | 2.57 | 1 70   | 2.03     | 2.22 | 1.05     | 1.97   | 2.10  | 1.65  | 1.78  |
| BCL212 01   |      | 14      | 0.78     | 27      | 1 18 1           | 12   | 1 20 | 1.02    | 1 10 | 1 33   | 1 14     | 1.02 | 1.15     | 1.40   | 1 10  | 1.05  | 1.00  |
| BCL212 02   |      | 72      | 3 0 6    | 10      | 1 1              | 61   | 2.51 | 2.67    | 2.68 | 1.55   | 2.85     | 3.02 | 1.54     | 3 30   | 3.84  | 3.60  | 2.70  |
| BCL2L2 03   |      | 40      | 230 1    | 69      | 1.87 2           | 22   | 1.84 | 1 18    | 1.62 | 1.65   | 1.73     | 1.40 | 1.60     | 5.52   | 2.64  | 1.75  | 1 01  |
| NEKBI       |      | 50      | 205      | 173     | 2 01 2           | 11   | 3.02 | 1.52    | 2.60 | 2.71   | 2.03     | 2.00 | 1.09     | 2.51   | 201   | 2.05  | 227   |
| STX6        |      | 87      | 120      | 10      | 0.45 0           | 10   | 2.45 | 1.10    | 2.00 | 2.01   | 1.65     | 2.09 | 1.60     | 1.71   | 2.91  | 295   | 1.68  |
|             |      |         |          |         |                  |      |      |         |      |        |          |      |          |        |       |       |       |

#### Figure S1. Screening for protein-specific antibodies with M-NAPPA. Binding

between antibodies (y-axis) and their specific target antigens on the array (x-axis) was detected with an HRP-labeled goat anti-mouse or rabbit IgG secondary antibody as previously described. Numbers indicate the normalized signal intensity; those in red are the intensity when the antibody bound to its specific target antigen. Cell color corresponds to the level of normalized signal intensity, such that white reflects low normalized signal intensity and dark green reflects high normalized signal intensity.



**Figure S2. Size distribution of 10k human proteins expressed and displayed on M-NAPPA.** The red arrows indicate proteins across a wide range of molecular weights that were further examined for protein expression and display.



**Figure S3. Protein-specific antibodies can detect their target antigens on NAPPA and M-NAPPA.** A) An antibody to Clusterin probed multiplexed and non-multiplexed features displaying p53, SERPINB3, CHGA, Clusterin, and AKT1 on M-NAPPA and NAPPA, respectively. B) An antibody to PP2A probed multiplexed and non-multiplexed features displaying PP2A, CDK6, ANXA1, PSAT1, and Fos on M-NAPPA and NAPPA, respectively. MFI = mean of fluorescent intensity. ms = mouse. N = NAPPA with each spot displaying one protein. M = M-NAPPA with each spot displaying five different proteins. Error bars are the standard deviations of fluorescent signal intensity for triplicate spots on the arrays.



**Figure S4. Western blot analyses of proteins with various molecular weights coexpressed in cell-free extract.** All combinations of plasmid cDNA encoding for five proteins of varying molecular weights expressed in human cell-free lysate and at similar levels. GST-tagged proteins (AbI1, IA-2, GAD2, Jun, RhoU, BCL2L2 and MT3033) were co-expressed in human cell-free extract, and probed with a mouse anti-GST antibody and then an HRP-labeled goat anti-mouse IgG antibody.







**Figure S6. High correlation of 10k human proteins expressed and displayed on M-NAPPA viral arrays on two separate days.** Displayed GST-tagged proteins were detected with a mouse anti-GST antibody and an Alexa Fluor 555 labeled anti-mouse secondary antibody. MFI = mean of fluorescent intensity.



# Figure S7. Boxplots of the MFI of GST-tagged proteins on M-NAPPA and NAPPA

### indicate that the majority of proteins are displayed on both array platforms.

Displayed GST-tagged proteins ("Gene") were detected with a mouse anti-GST antibody and an Alexa Fluor 555 labeled anti-mouse secondary antibody. Non-spots printed only with printing buffer ("Neg.") were used as negative controls. MFI = mean of fluorescent intensity.





Figure S8. Direct fluorescent detection had a higher signal-to-background ratio than the TSA method on M-NAPPA. A) High contrast black-and-white images of M-NAPPA arrays probed with a mouse anti-p53 antibody and an HRP-conjugated secondary antibody ("HRP gt-a-ms-IgG") or fluorescently-labeled secondary antibody ("DyLight649 rt-a-msIgG"). Large black spots indicate antibody binding, which are the locations of the p53 antigen. B) Average S/B (signal to background) fluorescent mean intensity across four replicate p53 spots, where the mean signal of the p53 spots was divided by the background signal of the non-spots containing only the printing master mix. Error bars represent the range of S/B across quadruplet spots.



**Figure S9. M-NAPPA can detect the same known protein-protein interactions as NAPPA arrays.** 35 different GST-tagged proteins were expressed and displayed on NAPPA and M-NAPPA arrays (array layouts on left), and then probed with N-terminal Halo Tagged Jun, Fos and LidA proteins. Interactions between Jun, Fos, and LidA with their known binding partners on the arrays were detected with a chicken anti-HaloTag antibody and then an Alexa Fluor 555 goat anti-chicken secondary antibody. The falsecolored blue and yellow images on right correspond to the normalized fluorescent signal from low to high, respectively. The signal of each feature was calculated from six replicate spots and then normalized to the median signal of all microarray spots.

Antigens that are known interactors of Jun, Fos, and LidA are indicated in red.



**Figure S10. Multiplexed and non-multiplexed proteins displayed on HD-NAPPA were detected using their corresponding antibodies.** Gene plasmids encoding for IA-2, GAD2, p53 and Fos were either mixed or spotted on the array individually.



**Figure S11. Detection of non-antigenic TB proteins using RAPID-ELISA in individual guinea pig sera samples.** There is no significant difference in the serological antibody binding to Rv2077A or Rv2682c between guinea pigs vaccinated with BCG (n-4) or PBS (n=5). The p-value was calculated using an un-paired Man Whitney t-test. ns = nonsignifcance



#### Figure S12. Protein display levels on M-NAPPA arrays remain constant across six

**months.** The M-NAPPA arrays can be stored for six months without a sacrifice in protein expression and display rate. The GST-protein display rate was calculated using the average signal intensity of "non-spots" plus two standard deviations using an anti-GST antibody.