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Abstract 

Telomerase plays a significantly important role in keeping the telomere length of a chromosome. 
Telomerase overexpresses in nearly all tumor cells, suggesting that telomerase could be not only 
a promising biomarker but also a potential therapeutic target for cancers. Therefore, numerous 
efforts focusing on the detection of telomerase activity have been reported from polymerase chain 
reaction (PCR)-based telomeric repeat amplification protocol (TRAP) assays to PCR-free assays 
such as isothermal amplification in recent decade. In this review, we highlight the strategies for the 
detection of telomerase activity using isothermal amplification and discuss some of the challenges 
in designing future telomerase assays as well. 

Key words: Telomerase activity, isothermal amplification, electrochemical assays, optical assays, 
signal-transduction assays. 

Introduction 
Telomerase, a ribonucleoprotein complex, is a 

specific reverse transcriptase and can elongate the 
telomeric repeats (TTAGGG) using the integral RNA 
as a template [1]. Its main role is to maintain the 
telomere length of a chromosome. To date, it is 
well-known that there is a great relationship between 
telomerase and cell death as well as carcinogenesis [2]. 
Telomerase plays an important role in the occurrence 
and development of cancers [3]. It was suggested that 
telomerase activity was in specific association with 
the oncogenic transformation of human cells [4]. The 
results indicated that telomerase activity could be 
detected in 85%-95% tumor cells of breast cancer, 
colon cancer, lymphoma, lung cancer, ovarian cancer, 
leukemia and so forth. Therefore, telomerase has 
become one of tumor biomarkers for judging the 
tumor cells [5]. The detection of telomerase activity is 
of particular importance in early diagnosis and 
treatment of cancers. 

The detection of telomerase activity was early 
established by Morin et al. in 1989 using telomeric 

repeat elongation method [6]. The telomeric repeats 
were elongated through telomerase reverse 
transcription and telomeric template damage by 
adding RNase. The crude product was separated by 
polyacrylamide gel electrophoresis and imaged in 
positive bands by autoradiography. The method has 
good stability, but requires a large amount of samples, 
a complex experiment protocol, and a long testing 
time as well as the sensitivity is also poor. In 1994, 
Kim et al. established a telomeric repeat amplification 
protocol (TRAP) assay to elongate the telomeric 
repeats by polymerase chain reaction (PCR) [7]. The 
sensitivity was increased by about 104 times. 
Therefore, TRAP assays were widely used for the 
detection of telomerase activity in the past decade [8]. 
However, the traditional TRAP assays require the 
autoradiography of the amplified products by 
polyacrylamide gel electrophoresis and the use of 
radioactive label, which result in that their application 
in clinic is severely limited. Afterwards, a lot of the 
improved TRAP strategies were reported to simplify 
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post-processing steps of time-consuming PCR [9]. For 
instance, molecular beacons [10], fluorescent dyes 
[11], and fluorescence resonance energy transfer 
(FRET) technology [12] were used to amplify PCR 
products. 

PCR amplification requires thermal cycling 
instrumentation and the rebarbative cross 
contamination is difficult to be avoided. In order to 
overcome these shortcomings, isothermal 
amplification as an alternative of PCR because of its 
easy manipulation, low cost, PCR-like sensitivity, and 
quick results is established to detect tumor 
biomarkers including telomerase [13]. In the previous 
review, we have summarized the development of 
nanotechnologies for the detection of commercial 
biomarkers or extracted biomarkers using isothermal 
amplification [14]. The nanotechnologies are 
categorized into three parts according to the 
target-to-signal probe ratio in the detection strategy, 
namely, the N:N amplification ratio, the 1:N 
amplification ratio, and the 1:N2 amplification ratio. 
Here we summarize the assays for the detection of 
telomerase activity using isothermal amplification. 
Based on the detection technology, we divide the 
assays into three categories: electrochemical assays, 
optical assays, and signal-transduction assays. At last, 
we also discuss some of the challenges, for example, 
sensitivity and reliability, in designing future 
telomerase assays as well. 

Assays for the Detection of Telomerase 
Activity Using Isothermal Amplification 
Electrochemical Assays 

Electrochemical assays are an attractive 
technique for the detection of telomerase activity 
because of their high sensitivity, low costs, and 
compatibility [15]. The innovative example is 
multiplexed electrical detection of tumor biomarkers 
with nanowire sensor arrays described by Lieber et al. 
in 2005 [16]. The elongation of the telomeric repeats 
on the silicon nanowire surface caused a change in 
conductance using silicon nanowires as a field 
transistor. To date, there is a great deal of 
electrochemical-based designs for the detection of 
telomerase activity. On the basis of the 
electrochemical signal source, we divide 
electrochemical assays into four categories: 
G-quadruplex/hemin DNAzyme-based 
electrochemical assays, nanoparticle-aided 
electrochemical assays, space-caused electrochemical 
assays, and electrochemiluminescence assays in the 
following discuss. 

G-Quadruplex/Hemin DNAzyme-Based 
Electrochemical Assays 

In 2004, Willner et al. firstly established a simple 
electrochemical method for the detection of 
telomerase activity using G-quadruplex/hemin 
DNAzyme without PCR amplification [17]. In the 
protocol, G-rich sequence was wrapped in the hairpin 
and template strand (TS) primer was located at the 
end of the hairpin. The elongated telomeric repeats 
from TS primer hybridized with the complementary 
strand DNA and the hybridization caused hairpin 
opening. The released G-rich sequence combined with 
hemin into G-quadruplex/hemin DNAzyme, which 
could catalyze the oxidation of 
2,2’-azino-bis(3-ethylbenzthiazoline)-6-sulfonic acid 
(ABTS) to generate green ABTS•+. Telomerase activity 
was calculated by measuring UV absorption of 
ABTS•+. The activity of G-quadruplex/hemin 
DNAzyme was then thoroughly investigated in 2011 
[18]. The results indicated that the relationship 
between telomere length and DNAzyme activity is 
not direct. Afterwards, the detection methods based 
on G-quadruplex/hemin DNAzyme were gradually 
developed [19]. For example, Chen et al. developed a 
dual-functional electrochemical biosensor on a single 
electrode through combining G-quadruplex/hemin 
DNAzyme with the electrochemical immunosensors 
for the detection of prostate specific antigen (PSA) 
and telomerase activity together [20]. Both the 
sandwich immunoreaction and G-quadruplex/hemin 
DNAzyme were constructed on the gold electrode 
surface (Figure 1). First, primary antibody (Ab1) was 
coated on the gold electrode surface to capture PSA. 
PSA could catch biotinylated secondary antibody 
(Ab2) to form the sandwich immunoreaction. 
Steptavidin was then combined with the biotinylated 
immunocomplex to multiply bridge TS primer. The 
elongation of the telomeric repeats was initiated by 
telomerase to form a long single-strand DNA 
(ssDNA) using isothermal amplification. G-rich 
sequence in ssDNA and hemin formed 
G-quadruplex/hemin DNAzyme, which could 
catalyze the reduction of H2O2 to produce current 
measured by cyclic voltammetry (CV). The method 
could easily detect telomerase activity of prostate 
cancer and the PSA antigen in serum as well as the 
potential application in detecting other antigens. In 
addition, the high ability of DNA 
tetrahedron-structure was utilized to precisely 
regulate the assembly of G-quadruplex/hemin 
DNAzyme for polyaniline deposition on the gold 
electrode surface [21]. 
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Figure 1. Schematic illustration of the dual-functional electrochemical assay based on G-quadruplex/hemin DNAzyme. Reprinted with permission from ref. [20]. 
Copyright (2013) Royal Society of Chemistry. 

 
Figure 2. Schematic illustration of silver nanoparticles-aided electrochemical assay using highly specific solid-state electrochemical process. Reprinted with 
permission from ref. [23]. Copyright (2014) John Wiley & Sons. 

 

Nanoparticle-Aided Electrochemical Assays 
Electrocatalysis based on metal nanoparticle is a 

specific amplification strategy to enhance the signal in 
electrochemical biosensing [22]. For the detection of 
telomerase activity, Qu et al. developed DNA-silver 
nanoparticles (DNA-AgNPs) as an electroactive label 
using highly specific solid-state Ag/AgCl reaction 
[23]. TS primer was first immobilized on the gold 
electrode surface. The telomeric repeats were 
elongated in the presence of telomerase and dNTPs 
using isothermal amplification. Positively charged 
silver ions were bound to negatively charged DNA 
and then reduced by sodium borohydride to form 
AgNPs (Figure 2). This assay significantly decreased 

the detection limit through nanoparticle-mediated 
signal amplification. They also developed other 
nanoparticle-aided electrochemical assays based on 
superior catalytic property of platinum nanoparticles 
(PtNPs) [24, 25]. The electrochemical signal was 
derived from the hydrazine oxidation/hemoglobin 
reduction catalyzed by PtNPs. PtNPs were absorbed 
onto the glassy carbon electrode (GCE). Recently, 
PtNPs capsuled metal-organic frameworks (MOFs) 
onto a GCE provided a rapid electrochemical assay to 
detect telomerase activity in single HeLa cell [26]. 

Nucleic acids-immobilized gold nanoparticles 
(AuNPs) are widely used for electrochemical signal 
amplification [27]. Zhu et al. captured spherical 
nucleic acids AuNPs through hybridization with the 
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telomeric repeats on the gold electrode surface [28]. 
The hairpin probe alternated hybridization by the 
specific initiator on AuNPs to generate a nicked 
double helix for dual signal amplification. 
[Ru(NH3)6]3+ inserted into double helix via 
electrostatic interaction to further amplify the signal 
measured with differential pulse voltammetry (DPV) 
(Figure 3). Bio-barcode amplification assay using 
DNA-AuNPs conjugate as a kind of electrochemical 
method was applied to improve the sensitivity of the 
telomerase detection [29]. [Ru(NH3)6]3+ as an indicator 
complexed the phosphate ion of DNA by electrostatic 
interaction to generate electrochemical signal. This 
assay could detect the telomerase activity extracted 
from as little as 10 HeLa cells. 

Liposome is able to load various biomarkers 
including enzymes and electroactive substances [30]. 
Dopamine-loaded biotinylated liposome was used to 
construct a highly sensitive electrochemical assay for 
the detection of telomerase activity in A549 cells [31]. 
In the study, carbon nanotubes-decorated GCE was 
used to enhance the sensitivity of the dopamine 
detection. Based on this strategy, the telomerase 
activity originated from 10 A549 cells could be 
detected. 

Space-Caused Electrochemical Assays 
The space from the elongation of the telomeric 

repeats on the electrode will affect electron transfer 
process. Based on this phenomenon, Chen et al. 
reported a label-free detection method of telomerase 
activity by electrochemical impedance spectroscopy 

(EIS) using isothermal amplification [32]. TS primer 
immobilized on the gold electrode surface elongated 
the telomeric repeats to form a long ssDNA. The 
ssDNA blocked the electron transfer of 
Fe(CN)63-/Fe(CN)64- to the gold electrode surface 
(Figure 4). The intensity of the impedance is related to 
the telomerase activity. The method is simple, but the 
sensitivity remains to be raised to a higher level. 
Space-caused electrochemical probes were used to 
build a small biosensor microchip for real-time 
detection of telomerase activity in less than 20 
minutes by electrochemical impedimetric biosensing 
[33]. Based on structure-switching DNA with 
ferrocene (Fc) as an electroactive indicator, 
space-caused electrochemical assay with a very wide 
linear response range, excellent stability and 
reproducibility was developed [34]. Moreover, the 
electrochemical oxidation signal intensity of guanine 
from the telomeric repeats on the gold electrode 
surface determined by DPV indicated the 
concentration of the telomerase [35]. The 
electrochemical assay in the limited space was 
recently proposed [36]. TS primer was first 
immobilized and repeating G-rich sequence was then 
formed using isothermal amplification on the inner 
wall of the nanochannels. Potassium ions (K+) 
induced the transformation of repeating G-rich 
sequence to multiplex G-quadruplex. Steric hindrance 
changes caused by transformation of repeating G-rich 
sequence in the porous anodic alumina nanochannels 
would affect the steady-state anodic current. 

 
Figure 3. Schematic illustration of gold nanoparticles-aided dual signal amplification electrochemical assay. Reprinted with permission from ref. [28]. Copyright 
(2015) American Chemical Society. 
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Figure 4. Schematic illustration of space-caused electrochemical assay based on electrochemical impedance spectroscopy method. Reprinted with permission from 
ref. [32]. Copyright (2011) Royal Society of Chemistry. 

 
Electrochemiluminescence Assays 

Electrochemiluminescence (ECL) is a highly 
sensitive technique for the detection of tumor 
biomarkers as well as telomerase [37]. ECL isothermal 
amplification assay for the detection of telomerase 
activity was early reported by Xing et al. [38]. ECL 
probe was hybridized to the telomerase elongation 
product, which was captured by streptavidin coated 
magnetic beads. ECL intensity is related to the 
concentration of telomerase. In addition, AuNPs on 
the electrode surface are able to enhance the 
luminescence signal and reduce the detection limit 
[39, 40]. Qu et al. constructed porphyrin-graphene 
nanocomposite modified GCE [41]. 
Meso-tetra(4-N,N,N-trimethylanilinium) porphyrin 
(TAPP), a cation porphyrin, inhibited graphene 
aggregation on the GCE surface. Tween 20 reduced 
nonspecific binding of proteins in physiological 
fluids. Ru(bpy)32+ was used as ECL signal reporter. 
The elongation of the telomeric repeats caused the 
dramatic increase in ECL signal of Ru(bpy)32+ because 
of the attraction between the telomeric repeats and 

Ru(bpy)32+ (Figure 5). 
In addition to the above several assays, 

ferrocenylnaphthalene diimide as a tetraplex 
DNA-specific binder [42], horseradish 
peroxidase-conjugated avidin (avidin-HRP) for the 
electrochemical reduction of 
3,3’,5,5-tetramethylbenzidine (TMB) [43] and T7 
exonuclease-aided 5’-methylene blue (MB) release 
[44] affected by telomerase elongation using 
isothermal amplification are also worthy of attention. 

Optical Assays 
Optical assays are the most widely employed 

strategy for the detection of telomerase activity 
[45-62]. Organic luminescent materials (molecular 
beacon, AIEgens) and inorganic nanomaterials 
(quantum dot, gold nanoparticle) which may release 
optical signal are used to monitor the telomerase 
product in vitro as well as in situ. Here we divide this 
part into four categories: fluorescent assays, 
chemiluminescent assays, colorimetric assays, and 
surface-enhanced Raman scattering (SERS) assays. 
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Figure 5. Schematic illustration of electrochemiluminenscence assay based on porphyrin-graphene nanocomposite-modified electrode. Reprinted with permission 
from ref. [41]. Copyright (2012) John Wiley & Sons. 

 

Fluorescent Assays 
Unlike PCR-based amplification approach, 

isothermal amplification for fluorescent detection of 
telomerase activity can not only improve the 
sensitivity but also get rid of precise temperature 
control. A real-time assay by using exponential 
isothermal amplification of the telomeric repeats was 
developed [63]. In the presence of telomerase, TS 
primer may extend, initiating an exponential 
isothermal amplification reaction with the aid of two 
enzymes (nicking endonuclease, DNA polymerase) 
and two primers (TS primer and probe primer). As a 
result, ultrafast (25 min) and ultrasensitive (single 
HeLa cell) detection was achieved. Plaxco et al. 
reported a two-step and PCR-free assay for detecting 
telomerase activity by utilizing exonuclease III-aided 
target recycling. After isothermal amplification, target 
induced fluorescence emission change can be easily 
detected even by naked eye [64]. Recently, stem-loop 
primer-mediated exponential isothermal 
amplification strategy reported by Li et al. was used 
for accurately and specifically detecting telomerase 
activity [65]. By strategically designing two stem-loop 
structures, the assay can nonspecifically detect 
telomerase extracted from single cell. The stem-loop 
primer-mediated exponential amplification reaction 
can be achieved under isothermal circumstances with 
a single step and one enzyme (DNA polymerase) 
(Figure 6). Base on the elongation reaction (telomerase 
primer), strand-displacement property (polymerase) 
and inherent signal-transduction mechanism (hairpin 

fluorescence probe), telomerase activity was 
converted into fluorescence signal [66]. 

DNAzyme known as single strand of catalytic 
DNA sequence is a promising component for the 
analysis of targets in the biological and medical fields. 
Among them, 8-17 DNAzyme which could catalyze 
the cleavage of its complementary substrate with the 
aid of its corresponding metal ion cofactor is 
attracting growing interest as a high selectivity and 
sensitivity biosensor [67]. Tan et al. described a 
PbII-dependent 8-17 DNAzyme-based probe to detect 
the telomerase activity in cell lysates [68]. This 
single-molecule probe could detect total protein in cell 
lysate range from 0.1 to 20 µg and discriminate tumor 
cells from normal cells with a 5-fold signal 
enhancement. Furthermore, 8-17 DNAzyme-based in 
situ isothermal amplification assay was developed for 
detecting clinical sample or analyzing in situ 
histochemistry [69]. 

In order to avoid the interfering bio-background 
luminescence and biochemical degradation, Qu et al. 
constructed a cellulose paper-based platform with 
near infrared (NIR) excitable upconversion 
nanoparticle as a telomerase activity detection probe 
[70]. The solid-phase platform is stable enough to 
store the test results at room temperature thus can 
discriminate telomerase activity of different cell lines 
by the naked eye. Fluorescence polarization is a 
self-calibration method, which is less susceptible to 
many factors including fluorescence fluctuation, 
photobleaching and surrounding disturbance, making 
it a powerful technique for detection. More recently, 
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Jin et al. present a fluorescence polarization strategy 
for isothermally amplified monitoring telomerase 
activity with high sensitivity and specificity [71]. In 
the presence of telomerase, the elongated telomeric 
repeats on the AuNPs hybridized with several short 
carboxyfluorescein (FAM)-modified complementary 
DNA to limit its molecular rotation, resulting in a 
high fluorescence polarization value. To simplify the 
structure and organic synthesis step, Xia et al. 
creatively designed a type of amphiphilic nucleic acid 
probes (ANAPs) comprised of a hydrophobic fluorene 
derivative unit and a hydrophilic DNA part, carrying 
on only fluorophore without any quencher [72]. In the 
absent of telomerase, the hydrophobic fluorophore 

unit in ANAPs aggregated, resulting in the 
fluorescent quenching according to 
aggregation-caused quenching effect (Figure 7). Upon 
binding with telomerase, the hydrophilic DNA part in 
ANAPs is elongated. Thus, the hydrophobic 
fluorophore unit disaggregates and liberates the 
fluorescent signal simultaneously. Owing to the high 
specificity of ANAPs, one-step isothermal 
amplification strategy is applied for tracking 
telomerase activity from not only mimic system but 
also clinic urine sample. Furthermore, ANAPs could 
distinguish tumor cells from normal cells by using 
efficient aggregation or dispersion [73]. 

 

 
Figure 6. Schematic illustration of stem-loop primer-mediated exponential isothermal amplification assay. Reprinted with permission from ref. [65]. Copyright 
(2016) Royal Society of Chemistry. 

 
Figure 7. Schematic illustration of amphiphilic nucleic acid probes for the detection of telomerase activity. Reprinted with permission from ref. [72]. Copyright 
(2015) American Chemical Society. 
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Nanomaterials such as mesoporous silica 
nanoparticle (MSN) bring us fantastic tools for 
real-time tracking of telomerase activity in living cells. 
For example, Ju et al. constructed a fluorescein 
contained MSN probe for intracellular mapping of 
telomerase activity [74]. Without telomerase, MSN 
probe was sealed by the wrapping DNA (O1, consists 
of TS primer and the telomeric repeats), fluorescence 
of fluorescein molecule was quenched by black hole 
fluorescence quencher (BHQ, modified on the inner 
wall of mesopore) (Figure 8). Active telomerase could 
trigger the extension and detachment of O1 from the 
MSN surface, leading to the gradual release of 
fluorescence observed from confocal microscopy 
image. This switchable and in situ strategy for 
tracking intracellular telomerase activity could 
distinguish different cell lines with various levels of 
telomerase activity and monitor the variation of its 
activity in response to telomerase inhibitor. In the 
following studies, they further simplified the 
procedure to make use of the nicked molecular 
beacon and gold nanoparticle for directly lighting up 
telomerase activity in living cells [75, 76]. 

 

 
Figure 8. Schematic illustration of mesoporous silica nanoparticle probe-based 
fluorescent assay. Reprinted with permission from ref. [74]. Copyright (2013) 
American Chemical Society. 

 
Recently, a photophysical phenomenon named 

aggregation-induced emission (AIE) was found in a 
group of fluorogens. Instead of aggregation-caused 
quenching (ACQ), the fluorescence intensity of 
fluorogens with AIE property is increased when AIE 

molecules are supramolecularly aggregated [77]. Xia 
and Lou et al. described an AIE-based turn-on 
technique for sensitive detection of telomerase activity 
[78]. A positively charged AIE dye, named as TPE-Z, 
is able to combine telomerase substrate 
oligonucleotides due to electrostatic attraction, but 
still shows weak emission owing to the finite physical 
constraint of short DNA strands (Figure 9). In the 
presence of active telomerase, the fluorescence 
intensity of TPE-Z could be remarkably increased 
after the elongation reaction and reflected the level of 
telomerase activity. This simple one-pot isothermal 
amplification strategy has been proved for the 
detection of telomerase activity in both clear 
(detection rate: 100%) or bloody (detection rate: 72%) 
urine samples from 41 bladder cancer patients and 
those from normal people. Although some improved 
achievements have been obtained, the specificity of 
the above assay is not satisfactory. To further enhance 
specificity, a quencher group was chemically 
modified on the primer to reduce the background 
noise and amplify the fluorescence signal [79]. As a 
result, this low background assay sustained excellent 
detection rate (100%) in clear urine specimens and 
achieved more satisfactory detection rate (87%) in 
bloody urine specimens. In order to improve the 
reproducibility, the combination of a cationic AIEgens 
with Cy3-labeled TS primer/FAM-labeled molecular 
beacon was performed for the detection of telomerase 
activity [80, 81]. 

Besides the above AIEgens-based in vitro 
telomerase activity assays, imaging of telomerase 
activity with a turn-on manner in living cells has been 
also reported by Lou et al. [82]. They made use of a 
yellow-emissive AIE dye (TPE-Py) for in situ 
monitoring intracellular telomerase activity (Figure 
10). Thanks to the electrostatic interaction, the 
positively charged TPE-Py could bind to the 
negatively charged telomerase substrate modified 
with a quencher group. Before telomerase related 
extension, TPE-Py emit faintly due to FRET process 
from the TPE-Py aggregation to the quencher. In 
living cells, telomerase substrate could be extended in 
the presence of active telomerase thus attract TPE-Py 
to fluoresce intensely. The proposed isothermal 
amplification assay exhibits remarkable advantages of 
broad applicability, superior photostability and 
feasibility for monitoring the variation of intracellular 
telomerase activity in different cell lines and screening 
telomerase-related drug as well. Recently, two 
positively charged AIEgens (Silole-R and TPE-H) as 
two fluorescent signals were united for enhanced 
monitor of extracellular and intracellular telomerase 
activity [83]. 
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Figure 9. Schematic illustration of AIE-based one-pot fluorescent assay. Reprinted with permission from ref. [78]. Copyright (2015) American Chemical Society. 

 
Figure 10. Schematic illustration of AIE-Based in situ fluorescent assay. Reprinted with permission from ref. [82]. Copyright (2016) American Chemical Society. 

 

Chemiluminescent Assays 
Luminol can be catalytically oxidized by H2O2 in 

the presence of G-quadruplex/hemin DNAzyme to 
generate chemiluminescence signal. With the 
advantages of simple procedure, the reduced 
nonspecific adsorption and high sensitivity, Zhang et 
al. developed a chemiluminescent assay for the 
detection of telomerase activity [84]. In the 
telomerization reaction step, substrate primer 
extended and produced several repeat units. The 
elongated product hybridized with the reverse 
primer, initiating strand displacement amplification 
(SDA) to generate short oligonucleotides (Figure 11). 
Afterwards, this short oligonucleotide might combine 
TS primer and consequently trigger an isothermally 
exponential amplification reaction (EXPAR), 
generating numerous catalytic DNAzyme sequence. 
Hemin could interact with DNAzyme sequence to 

form G-quadruplex structure, which could catalyze 
luminol with the aid of H2O2 to form 
chemiluminescent signal. On the contrary, both SDA 
and EXPAR are forbidden in the absence of active 
telomerase, failing to generate telomerase-related 
signal. Combination of wide dynamic range, highly 
sensitive chemiluminescent assay and highly efficient 
two-stage isothermal amplification, this method could 
sensitively detect telomerase activity from single 
HeLa cell with label-free DNA probe. 

Colorimetric Assays 
AuNPs have benefited the development of 

colorimetric assays for telomerase activity detection. 
For instance, Willner et al. reported a colorimetric 
sensing platform based on L-cysteine induced AuNPs 
aggregation [85]. In the presence of hemin and K+, 
guanosine-rich telomerase elongation repeat units 
could fold into G-quadruplex structure (Figure 12). 
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This structure as horseradish peroxidase-like 
DNAzyme could catalyze the oxidation of L-cysteine 
(thiols as reactant) into cysteine (disulfides as 
product). At this moment, the UV absorption of 
AuNPs is prohibited to change from individual 
induced red into aggregated induced blue, which is 
highly correlated with the concentration (activity) of 
telomerase. Although the relatively fast detection time 
(3 h) and acceptable detection limit (27 cells/μL), the 
assay provides a potential point-of-care testing 
platform for cancer diagnosis observed by UV-vis 
spectrometry even naked eye. 

Interestingly, Xia et al. developed a direct and 
bidirectional method for the detection of urine 
telomerase by making use of difunctional AuNPs 
with multiple colorimetric signals [86]. Difunctional 
AuNPs contain two sequences consist of telomerase 

primer and a reporter to combine the telomerase 
elongated repeats (Figure 13). Adding of active 
telomerase, the elongated repeats in the first kind of 
AuNPs could hybridize with the reporter from the 
second kind of AuNPs, forming a complex network 
structure. According to the concentration (activity) of 
telomerase, difunctional AuNPs exhibit four 
detection-color states including blue, red, purple and 
precipitate. The clinical diagnosis applicability of this 
accurate and simply assay has been proved by 18 
urine specimens from inflammation patients, bladder 
cancer patients as well as healthy individuals. One of 
the advantages of the difunctional AuNPs-based 
assay is that the sensing events can be recognized by 
naked eye without complicated manipulation and 
sophisticated readout instrumentation. 

 

 
Figure 11. Schematic illustration of telomere-induced two-stage isothermal amplification-mediated chemiluminescent assay. Reprinted with permission from ref. 
[84]. Copyright (2013) American Chemical Society. 
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Figure 12. Schematic illustration of a colorimetric assay using L-cysteine-mediated AuNPs aggregation. Reprinted with permission from ref. [85]. Copyright (2014) 
American Chemical Society.  

 
Figure 13. Schematic illustration of a colorimetric assay using difunctional AuNPs. (a) The number axis theory for clinical estimate of bladder cancer without pain 
based on proposed method (N, normal individuals; C, bladder cancer). (b) Telomerase extracted from urine samples. (c) The principle of telomerase detection. 
Reprinted with permission from ref. [86]. Copyright (2014) American Chemical Society. 
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Surface-Enhanced Raman Scattering (SERS) Assays 
SERS has a good specificity for the identification 

of biological molecules and can detect the low 
concentration analysts. In recent years, SERS has got 
great development in biomedical imaging and disease 
diagnosis as well as the detection of telomerase 
activity due to the development of probe molecules 
and nanomaterials [87]. For example, 
5,5’-dithiobis(2-nitrobenzoic acid) (DTNB) anchored 
on AuNPs as SERS reporter [88, 89], the elongation of 
the telomeric repeats caused a definite difference in 
SERS signal. The cyanine 5 (Cy5)-modified DNA 
sequence embedded with AuNPs-DNA pyramids as 
SERS reporter [90], the elongation of the telomeric 
repeats triggered the release of Cy5-modified DNA 
sequence from the pyramids, which caused a 
significant decrease in SERS signal (Figure 14). 
Recently, Yang et al. developed a quadratic signal 
isothermal amplification approach for SERS detection 
of telomerase activity at single-cell level [91]. The 
elongated telomeric repeats on the silica microbeads 
(SiMBs) surface hybridized the terminal sulfhydryl 
ssDNA to form a long double-strand DNA (dsDNA). 
The dsDNA subsequently captured AgNPs via Ag-S 
bond. Ag+ from the dissolution of AgNPs caused the 
aggregation of 4-aminobenzenthiol (4-ABT) 
immobilized on the AuNPs surface (AuNPs@4-ABT) 
to generate a lot of “hot-spots” for quadratic signal 
isothermal amplification using SERS signal as the 
readout. The strategy could achieve the detection 
limit down to single HeLa cell. Of note, this method 

probably has good performance at colon cancer 
tissues. 

Signal-Transduction Assays 
Personal glucose meter has been effectively 

employed for the quantitative detection of glucose as 
well as biomarkers in the human blood [92]. As a 
signal output, personal glucose meter could be also 
used to detect non-glucose compounds such as DNA 
[93], small molecule [94], and protein [95]. It is a 
remarkable fact that personal glucose meter has been 
considered as a promising signal output candidate for 
the detection of telomerase activity. For example, 
biotin-modified TS capture probe tailored in a 96-well 
plate was elongated by telomerase and the elongated 
sequence hybridized the invertase-conjugated 
complementary probe to form a nick. The invertase 
turned sucrose to glucose, which generated signal 
readout by personal glucose meter [96]. The authors 
performed the signal-transduction detection of 
telomerase activity in 5 different cell lines (HeLa, 
A549, K562, MCF-7, and MDA-MB-231). The 
detection limit is under 20 HeLa cells. However, the 
authors also point out at last that this method has the 
false positive results for corresponding clinical use 
and more reliable result is probably got by the 
combination of other microscopic cytopathology 
methods in glucose meter readout for the detection of 
telomerase activity in tumor cells. 

Yang et al. designed a tailored approach for the 
detection of telomerase activity using personal 
glucose meter as a signal transducer [97]. TS primer 

was first immobilized on 
commercially available 
screen-printed gold electrode surface 
via Au-S bond. Telomerase extracted 
from HeLa cells triggered the 
elongation reaction with the 
assistance of dNTPs using isothermal 
amplification to generate a long 
ssDNA. The hybridization of 
invertase-labeled cDNA introduced 
the invertase on the electrode. The 
conversation of sucrose to glucose by 
the invertase formed a strong 
readout signal from personal glucose 
meter (Figure 15). Furthermore, this 
portable detection method could be 
also used to investigate telomerase 
inhibitor. 

 
 

 
Figure 14. Schematic illustration of an SERS assay 5 using Cy5-modified DNA sequence embedded with 
AuNPs-DNA pyramids as SERS reporter. Reprinted with permission from ref. [90]. Copyright (2016) 
John Wiley & Sons. 
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Figure 15. Schematic illustration of signal-transduction assay using personal glucose meter as a signal transducer. Reprinted with permission from ref. [97]. 
Copyright (2014) Royal Society of Chemistry. 

 

Conclusions and Outlook 
In this review, we have summarized the recent 

development of several assays from tremendous 
efforts in focusing on the detection of telomerase 
activity using isothermal amplification. It makes sure 
that each method has its own advantages and 
disadvantages. For example, optical assays for the 
detection of telomerase activity are of relatively high 
throughput but relatively low sensitivity. 
Electrochemical assays have high sensitivity but 
require the use of electrochemical devices. 
Undoubtedly, the exploration of the assays for the 
detection of telomerase activity is still a highly 
important and extremely active research area in 
Analytical Chemistry. In the field of telomerase 
detection, several challenges (e.g. sensitivity and 
reliability) still remain if the assays are considered for 
application in fundamental laboratory research and 
clinical trials. 

The sensitivity is one of the most important 
standards for evaluating analytical methods for 
detecting telomerase activity, which still puzzles the 
scientists because the telomerase molecule is at low 
concentration even in telomerase-positive tumor cells 
[98]. Therefore, tremendous efforts focusing on the 
sensitivity of the telomerase assays have been 
performed toward creating highly sensitive 
telomerase assays using isothermal amplification in 
the past decade [14]. Although some impressively 
sensitive methods have been reported, some key 
problems need to be concerned. For example, the 
primer extension assay may be enhanced to improve 

the sensitivity. The sensitivity for detecting 
telomerase activity in complex biological samples 
such as body fluid samples is still not good. 

The reliability mainly is based upon the precise 
estimation of telomerase activity. Sometimes, an 
advanced telomerase assay is difficult to be repeated 
by other scientists because the technologies including 
external control experiment have not yet been 
standardized. In addition to methodology, the 
bioengineering process such as telomerase 
purification, assay handling, signal collection, and 
data analysis should be very important for 
quantitatively comparing control experiment and 
other reports. Precise estimation of telomerase activity 
will be also benefit for other unknown techniques. 

In spite of sensitivity and reliability, the in vivo 
assays for the detection of telomerase activity still 
remain an enormous challenge. With the help of 
nanomaterials, the in vivo assays for the detection of 
telomerase activity may be achieved, but is still in the 
early stage [99]. Enormous efforts should be thrown in 
enhancing their performance including good 
selectivity and high sensitively in complex cellular 
environment. With the development of methodology, 
we believe that the in vivo assays for the detection of 
telomerase activity may achieve in clinical application 
for diagnosis of cancers in the foreseeable future. 

The assays for the detection of telomerase 
activity using isothermal amplification are the focal 
point in this review. They have been used to detect 
variety of cancers such as cervical cancer, breast 
cancer, bladder cancer, lung cancer, and so forth 
(Figure 16). But it should be strongly mentioned that 
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telomerase could be not only a promising biomarker 
but also a potential therapeutic target for cancers. The 
anti-telomerase strategies such as using telomerase 
inhibitors are beneficial in treating tumors [100]. 
Various telomerase inhibitors have been well 
established for telomerase-based cancer therapy 
including pre-clinical studies. Therapeutic approaches 
mainly contain expression modulator, direct enzyme 
inhibitor, active immunotherapy, G-quadruplex 
inhibitor, and gene therapy. Telomerase inhibitors 
have the advantages of universal target, critical target, 
specificity, efficiency. However, there is a difference 
in the occurrence and development of different 
cancers, resulting in that there is not a universal 
inhibitor for the treatment of cancers. The use of 
telomerase inhibitors may induce non-telomerase 
elongation reaction. Telomerase inhibitors may have 
adverse side effects on human germ cells and 
hematopoietic stem cells in those a certain level of 
telomerase activity exists. It is still a great challenge 
that telomerase inhibitors are used in clinical for the 
treatment of cancers. 

 

 
Figure 16. The occurrence frequency of cancer model studied in the assays for 
the detection of telomerase activity using isothermal amplification referred in 
this review. 
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