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Abstract 

Heterogeneity in transcriptional data hampers the identification of differentially expressed genes 
(DEGs) and understanding of cancer, essentially because current methods rely on cross-sample 
normalization and/or distribution assumption—both sensitive to heterogeneous values. Here, we 
developed a new method, Cross-Value Association Analysis (CVAA), which overcomes the 
limitation and is more robust to heterogeneous data than the other methods. Applying CVAA to 
a more complex pan-cancer dataset containing 5,540 transcriptomes discovered numerous new 
DEGs and many previously rarely explored pathways/processes; some of them were validated, 
both in vitro and in vivo, to be crucial in tumorigenesis, e.g., alcohol metabolism (ADH1B), 
chromosome remodeling (NCAPH) and complement system (Adipsin). Together, we present a 
sharper tool to navigate large-scale expression data and gain new mechanistic insights into 
tumorigenesis. 

Key words: Cross-Value Association Analysis; normalization-free; pan-cancer; transcriptome; heterogeneity. 

Introduction 
Identifying the molecular alterations associated 

with cancer is the prerequisite for understanding the 
mechanism of tumorigenesis [1–4]. Alterations in gene 
expression level play a crucial role in oncogenesis, 
and thus deciphering the pattern of dysregulated 
gene expression across different cancer types could 
not only provide mechanistic insights into disease 

pathogenesis but also aid in developing strategies for 
cancer diagnosis, prognosis and therapy [5–12]. 
However, the high dimension and complex 
heterogeneity of RNA-Sequencing (RNA-Seq) data 
from diverse cancer types poses an enormous 
challenge to cross-tumor analysis [10], resulting in 
biased or even false results under current 
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quantification or normalization methods [13,14] and 
distribution assumptions [15–17]. 

During the identification of differentially 
expressed genes (DEGs), normalization and 
distribution assumption of gene expression levels 
across samples are two essential steps in the widely 
adopted parametric methods such as edgeR [18], 
DESeq [19], EBSeq [20] and baySeq [21]. Although the 
current non-parametric methods such as SAMSeq 
[15], LFCseq [16] and NOISeq [17] show less 
dependence on the distribution assumption, 
cross-sample normalization is still a common step in 
current non-parametric and parametric methods. For 
example, SAMSeq, LFCseq and NOISeq use Upper 
Quartile, TMM (The trimmed mean of M-values), and 
quantile, respectively, for normalization, which are 
commonly used in parametric methods [15-21]. 
However, accurately normalizing large-scale datasets 
remains difficult [13,14], especially for the highly 
heterogeneous cancer genomic datasets, where the 
complex heterogeneity in cancers can strongly 
influence the efficiency of the parametric methods 
due to their sensitivity to frequently occurring outliers 
(genes or samples with extreme values). Indeed, even 
removing a single sample with outlier values can 
strikingly influence the results yielded by current 
DEG methods (see our analysis below). Recently, a 
Spike-in method shows potential to control the 
problems of normalization and is able to evaluate the 
expression levels of genes under study [13,22,23]. This 
method however works only when it is incorporated 
into experimental design. Therefore, how to properly 
analyze and utilize the massive amount of existing 
genomic data, such as those generated by The Cancer 
Genome Atlas (TCGA) project, remains challenging. 
A new method that can overcome these problems is 
urgently needed to take full advantage of the valuable 
genomic data [5,7,11,12]. 

Materials and Methods 

Gene expression data sets 
Gene expression data of The Cancer Genome 

Atlas (TCGA; http://cancergenome.nih.gov, RNASeq 
Version 2) was downloaded from the Firehose of 
Broad Institute's Genome Data Analysis Center 
(https://confluence.broadinstitute.org/display/GD
AC/Home, version 20140316, with the substring 
"Level_3_RSEM_genes_normalized" in file names). 
After excluding the cancer type with less than 10 
normal tissue samples, we got 5,540 samples in total, 
comprising 4,909 primary solid tumor samples and 
631 normal samples from 13 cancer types (Table S1). 
Clinical data and raw reads counts of RNA 
sequencing (RNA-seq) data sets were also 

downloaded from the Firehose. It should be 
mentioned that the level 3 gene expression data sets 
have already been processed by a slight normalization 
method in TCGA (for each individual sample, the 
values were divided by the 75-percentile (after 
removing zeros) and multiplied by 1,000) in order to 
compare gene expression levels among samples. Such 
kind of normalization does not influence the efficacy 
of our algorithm, because it does not disturb the order 
of gene expression values within each sample. 

Cross-Value Association Analysis (CVAA) 
In pan-cancer analysis, we aim to identify 

differentially expressed genes (DEGs) between tumor 
and normal samples across cancer types while 
accounting for other effects. The downloaded 
RNA-Seq data sets are denoted as the matrix E with m 
rows (samples) and n columns (genes). The method 
can be sketched as below: 

Step 1: Comparison 
For the i-th gene in a sample, we compare its 

expression level to all other genes within the same 
sample. Then the comparison is performed for all the 
samples and the results are formed in a frequency 
table according to the four categorical variables: R 
(relationships including less, equal and greater), C 
(cohorts of compared samples, 13 cancer types), S 
(sample_types, normal and tumor), G (genes that are 
compared to gene i, all genes except gene i). 

Step 2: Scoring 
We apply the log-linear model on the frequency 

table of gene i to compute the likelihood ratio test 
(LRT) statistic using this model: 

(S + R) * C * G. 

According to the log-linear model theory, this 
LRT statistic represents the significance score of gene i 
which is differently expressed between tumor and 
normal samples across cancer types. In this model, 
“+” represents the additive effect between two factors; 
“:” represents the interaction effect between two 
factors (A : B), and “*” is for all effects of the two 
factors (A + B + A : B). The model (S + R) * C * G 
measures all the effects including the interaction effect 
between S and R (S : R : C : G, S : R : C, S : R : G and S : 
R), and removes all other effects without this 
interaction effect (e.g., C : R). Also, this model can be 
specified as: 

S * R * C * G - S : R : C : G – S : R : C - S : R : G - S : R. 

To obtain the overall expression difference 
strength of gene i across cancer types, we compute the 
logarithm 2 of the odds ratio (LOD) values of the 
margin table of the sample_type (S) factor and 
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relationship (R) factor after removing the “equal” 
level of relationship factor (up-regulation in tumors: 
LOD > 0, down-regulation: LOD < 0). 

Step 3: Ranking 
After looping step 1 and step 2 for each gene, we 

get scores for all genes and rank them in descending 
order. Top genes are the most significant 
cancer-associated genes. These scores are comparable 
due to that: 1) the frequency tables of each gene have 
the same factor structure; 2) scores are mutually 
dependent because comparisons are dependent, that 
is, if gene A is greater than gene B, gene B must be less 
than gene A in the same sample. 

The CVAA was developed as an R package, 
which is available upon request.  

Interpretation of method comparison 
To compare and properly evaluate the power 

and efficacy between CVAA and the other methods, 
here we focus on accounting for the complex 
heterogeneity in the same transcriptome data. Since 
the heterogeneity in cancer data is too complex to do 
simulation, we use a more intuitional method to show 
the robustness of a method by removing one sample, 
and then compare the changes in results before and 
after the “leaving-one-out”, analogous to the 
“cross-validation” adopted in machine learning 
study. Our assumption is that the impact of a single 
sample is very limited in the context of large-scale 
samples, so any significant change(s) in the obtained 
results after the removal of one sample should be false 
negative(s) or false positive(s). To further compare the 
robustness of CVAA to other methods, we randomly 
shuffled the gene labels by inducing “noise” into a 
proportion (1%, 5% or 10%) of samples, and then 
evaluated their ability of resisting noise by comparing 
the gene ranks before and after the introduction of 
noisy samples. 

Large-value effect in CVAA 
Different from the existing DEG methods, CVAA 

depends only on comparisons within a sample, 
making CVAA more robust and suitable for large 
sample analysis, which, however, also introduces a 
potential caveat: if a gene has the highest or lowest 
expression levels in all samples, CVAA cannot 
identify it even if this gene is truly differentially 
expressed between the case and control groups. 
However, our results also suggest this caveat might 
have minor influence because CVAA shows high 
agreement with other methods (Fig. 1) and can filter 
false positives caused by heterogeneous samples. 

Comparison with the other pan-cancer 
transcriptome studies 

Although several studies performing 
cross-tumor expression analysis have been presented 
using either microarray [5–7,11,12,24] or RNA-Seq 
[25] data, these studies all conducted current DEG 
methods to identify dysregulated genes for every 
cancer type separately and then combined the results 
from all the cancers. In contrast, our work has the 
following significant differences or improvements: 1) 
In this merging strategy, the pan-cancer results 
depend on individual cancer analysis, thus any bias in 
one cancer type will influence the pan-caner results. 2) 
The thresholds for each cancer type are mandatorily 
specified, however, CVAA puts all cross-tumor 
transcriptome data sets into one model framework 
that is just a simple extension of the model for one 
cancer type. 3) By introducing LOD, we can 
simultaneously describe the extent to which a gene is 
significantly (LRT or rank) and commonly (LOD) 
differentially expressed across cancer types. As a 
result, despite the common DEGs (genes with greater 
absolute LODs, such as ADH1B and NCAPH) focused 
by the previous studies, our result also identified 
DEGs showing different change patterns across 
cancer types (genes with LODs around 0, such as 
MS4A15 and SUSD4), which greatly extends the 
category of DEGs list. 

Percentile rank 
Because genes are expressed at different levels 

among tissues or cancer types, to avoid the tissue 
effect and capture the change pattern from normal 
tissues to tumors across cancer types, we scale gene 
expression levels to 1-100 using percentile rank. Given 
a vector of values, percent rank is defined as: 
(Count_Less_i + 0.5 ×Frequency_i) / N, where 
Count_Less_i is the count of all values less than the 
value i of interest, and Frequency_i is the frequency of 
value i, N is the size of the vector. We use percentile 
rank to visualize alteration patterns across cancer 
types and define the 90% normal intervals for each 
gene in each cancer type. It should be noted that 
cross-sample normalization (percentile rank) was not 
used in the CVAA. 

90% normal intervals and dysregulation 
frequency (DF) 

Although the CVAA does not require 
normalization, we have to describe the frequency of 
differential expression events occurred in tumor 
samples for each gene. Briefly, we first calculate 90% 
normal intervals of a gene in each cancer type, and use 
these intervals to calculate DFs. For a given gene and a 
cancer type, we use percentile rank to normalize gene 
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expression values in the normal tissue of this cancer 
type, and obtain the expression value (downloaded 
value) corresponding to the minimum percentile rank 
which is not less than 0.05, and the expression value 
corresponding to the maximum percentile rank which 
is not greater than 0.95. The normalized expression 
levels between 0.05 and 0.95 are defined as the 90% 
normal interval of gene expression in the cancer type. 
If a gene expression value in this cancer type lies 
outside the 90% normal interval, we say that this gene 

is dysregulated in the sample. The proportion of 
dysregulated tumor samples to all tumor samples is 
the dysregulation frequency of a gene. 

Multidimensional scaling 
To cluster samples based on change patterns and 

avoid the interference of tissue effects, we use 
percentile rank values to perform multidimensional 
scaling using R function cmdscale. 

 

 
Figure 1. Comparisons among CVAA, T-Test, edgeR and DESeq in analyzing the same breast cancer data comprising 110 normal/noncancerous tissue (N) and 1,037 
tumor samples (T). (a) Venn diagram of the top 2,000 DEGs generated by CVAA, T-Test, DESeq and edgeR, respectively. (b) Expression levels of LALBA gene in 
normal and tumor samples. LALBA severs as an example of the genes showing higher ranks in CVAA but lower in others (cf. Table S2). (c) Gene expression changes 
estimated by LODs (CVAA) and logFC (T-Test, edgeR and DESeq). LOD or logFC > 0 indicates up-regulation; LOD or logFC < 0 indicates down-regulation. The top 
2,000 genes identified by CVAA are indicated by red dots. (d-f) Gene ranks before (Y-axis) and after (X-axis) removing the sample with the extreme value of TNNT1 
in Figure 1c (Barcode: TCGA-GI-A2C8-11A-22R-A16F-07) by CVAA, T-Test and edgeR. Genes with ranking changes for more than 5,000 are indicated by red dots, 
indicating that these genes are very sensitive to the sample removal. (g) Expression levels of MYLPF gene between normal and tumor samples. MYLPF serves as an 
example of the genes showing a higher rank in CVAA but smaller in other above-mentioned methods. (h) Multidimensional scaling analysis of all samples considered 
here, the enlarged red dot indicates the removed sample. 
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Gene Ontology enrichment analysis 
This is performed using the online tool 

(http://david.abcc.ncifcrf.gov/). 

Cross-cancer-type survival analysis 
Because gene expression levels vary greatly 

among cancer types, it is impossible to use a fixed 
expression threshold to discriminate expression 
status. In order to perform cross-cancer survival 
analysis, we define a gene to be dysregulated in the 
samples when its expression value is outside its 
corresponding 90% normal intervals. Then we apply 
the R package 'survival' (http://cran.r-project.org/ 
web/packages/survival/) to perform cross-cancer 
survival analysis using the standard Cox proportional 
hazards model. Hazard ratios exceeding 1 suggest 
gene dysregulation events to be associated with an 
overall detrimental effect across cancers, whereas 
those below 1 indicate better outcomes. We examined 
survival associations with dysregulation events of 
single gene, gene pairs, and the numbers of 
dysregulated genes in individual samples, 
respectively. Age and gender are used as covariates in 
these analyses. Survival association with gene pairs 
suggests the effects of joint dysregulation events, and 
the association with the number of dysregulated 
genes indicates the global dysregulation effects. 

Constructs, cell culture, shRNA-lenti-viral 
infection and cell proliferation assay 

Independent shRNAs against different genes 
targeting to different regions were constructed using 
pLKO.1 vector, and the 3XFlag C-terminal tagged 
forms of different over-expression genes were 
synthesized and cloned into pCDH-MSCV-E2F-eGFP 
lenti-viral vector, and all the constructs were verified 
via sequencing, the detail cloning information will be 
provided upon request. The lenti-viruses were 
generated according to the manufacture protocol, in 
brief, supernatants containing different lenti-viruses 
generated from HEK-293T cells were collected 48 and 
72 hours post-transfection respectively, cells were 
infected twice by 48 hour- and 72 hour- viruses 
respectively in the presence of 4 µg/mL polybrene. 
21bp targeting sequences are indicated in Table S12, 
constructs were sequencing verified. Stable cells were 
selected by puromycin treatment. Cells were 
trypsinized and plated into 24-well plates and the cell 
numbers were subsequently counted on each day. 
HEK-293T cells were cultured in DMEM medium, 
A549 was cultured in HAM’S/F12 medium, SW480 
and SW620 were cultured in DMEM/F-12 medium, 
MDA-MB-231 was cultured in RPMI 1640 medium, 
MCF7 was cultured in MEM plus NEAA medium, all 
the cells were supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin and all 
cells were incubated in a humidified atmosphere with 
5% CO2 at 37°C. 

IHC and scores 
The IHC staining for samples on the TMAs was 

carried out using ready-to-use Envision TM+ Dual 
Link System-HRP methods (Dako; Carpintrria, CA). 
The staining condition for each antibody was adjusted 
according to our laboratory experience. Briefly, each 
TMA section was deparaffinized and rehydrated, and 
high-temperature antigen retrieval was achieved by 
heating the samples in 0.01 mol/L citrate buffer in a 
domestic microwave oven at full power (750 Watts) 
for 30 minutes, then the samples were immersed into 
methanol containing 0.3% H2O2 to inactivate 
endogenous peroxidase at 37°C for 30 minutes. To 
eliminate nonspecific staining, the slides were 
incubated with appropriate preimmune serum for 30 
minutes at room temperature. After incubation with a 
1:300 dilution of primary antibody to ADH1B and 
NCAPH at 4°C overnight, slides were rinsed with 
phosphate-buffered saline (PBS) and incubated with a 
labeled polymer-HRP according to the manufacturer’s 
instructions and incubated for 30 minutes. Color 
reaction was developed by using 3, 
3’-diaminobenzidine tetrachloride (DAB) chromogen 
solution. All slides were counterstained with 
hematoxylin. Positive control slides were included in 
every experiment in addition to the internal positive 
controls. The specificity of the antibody was 
determined with a matched IgG isotype antibody as a 
negative control. 

Immunohistochemical staining of TMA sections 
were scored independently by SZ and SF who were 
blinded to the clinicopathological data, at 200X 
magnification evaluation was based on the staining 
intensity and extent of staining. Staining intensity for 
ADH1B and NCAPH was scored as 0 (negative), 1 
(weak), 2 (moderate), and 3 (strong). Staining extent 
was scored as 0 (0%), 1 (1-25%), 2 (26-50%), 3 (51-75%), 
and 4 (76-100%), depending on the percentage of 
positive-stained cells. The sum of the staining 
intensity and the staining extent scores ranged from 0 
to 7, with negative staining (0-1) and positive staining 
(2-7). Agreement between the two evaluators was 
95%, and all scoring discrepancies were resolved 
through discussion between the two evaluators. 

These statistical analyses were performed using 
SPSS 19.0. The chi-square test was used to analyze the 
relationship between the expression of ADH1B and 
NCAPH proteins and clinically pathological 
characteristics and prognostic factors of NSCLC. All P 
values were based on the two-sided statistical analysis 
and P-value less than 0.05 was considered to be 
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statistically significant. 

Results 
CVAA shows better performance in dealing 
with heterogeneous data 

Here, we developed Cross-Value Association 
Analysis (CVAA), a new strategy that: 1) performs 
mutual comparisons among genes, 2) scores 
association with effects of interest using the log-linear 
model, and 3) obtains the most significant DEGs by 
ranking the scores of all genes. This strategy identifies 
DEGs based on comparisons within samples and thus 
eliminates the need of normalization and assumption 
for expression levels (see Methods). To evaluate the 
power and efficiency of CVAA, we first analyzed the 
same tumor transcriptome dataset (comprising 1,037 
breast tumors and 110 non-cancerous breast tissues 
(hereafter referred to as normal tissues)) (Table S1) 
and found that, CVAA has better performance and 
generates much more stable outputs in dealing with 
extreme values (see Methods for more details), 
compared to the commonly adopted parametric 
methods, such as T-Test, edgeR [18] and DESeq [19]. 
Raw reads counts were used in CVAA and all the 
compared methods except for T-Test in which 
log2-transformed raw counts were used. 

As shown in Venn diagram (Fig. 1a), CVAA has 
a minimum number of genes whose ranks are not 
higher than 2,000 for one method but higher for others 
(hereafter referred to as singleton genes). Of the 187 
singleton genes in the top 2,000 of CVAA, 19, 60 and 
54 genes are ranked behind 8,000th in T-Test, edgeR 
and DESeq, respectively. For instance, gene LALBA is 
ranked 1,206th in our CVAA, but shows very low 
rankings in other methods: 9,026th, 18,497th and 
17,746th in T-Test, edgeR and DESeq, respectively 
(Table S2). Boxplot shows that LALBA is an 
apparently down-regulated gene (Fig. 1b), and its 
expression level is even close to zero in 81% of tumor 
samples. This discrepancy is attributable to the fact 
that LALBA shows discontinued expression levels and 
has many extreme values, which deviates the 
assumptions of either normality (T-Test) or negative 
binominal distribution (DESeq and edgeR). Of note, 
CVAA uses the Log of Odds (LOD; up-regulation: > 0, 
down-regulation: < 0; Methods) to estimate 
expression change directions. Of the top 2,000 genes 
identified by CVAA, 16 genes show different 
estimates for direction changes between the LODs 
and the commonly used log Fold Change (logFC) (Fig. 
1c). Taking TNNT1 (LOD = 1.99, logFC = -1.29) and 
DLK1 (LOD = -1.94, logFC = 0.9) for examples, 
boxplots show logFC estimates are easily influenced 
by some extreme values (Fig. 1c). 

The capability of dealing with outliers (with 
extreme values) is the key to produce a stable output 
in the analysis of the heterogeneous data such as 
cancer transcriptomes. While removing a single 
sample with extreme values (Fig. 1c) from over 1,000 
breast cancer samples can lead to substantial changes 
in ranking DEGs by either T-test or edgeR, the ranks 
of CVAA are almost unchanged (Fig. 1d-f; Tables S2 
and S3). There are several notable issues with the 
existing methods. After removing one sample, DESeq 
fails to converge (data not shown), suggesting 
possible computational problems in DESeq for 
heterogeneous samples. Ranks of some genes in 
edgeR increase (e.g., TNNT1, from 8,938th to 1,689th) or 
decrease dramatically, for example, 8 of the top 10 
genes in the original edgeR list are ranked behind the 
8,000th after the sample removal (Fig. 1f; Tables S2 and 
S3). We also noticed that the two genes (LALBA and 
DLK1) with significantly differential expressions 
between cancer and the normal tissues but still stay at 
the tail of the new edgeR list, likely due to both genes 
containing more than one outlier (Fig. 1b, c and f), 
suggesting both genes are influenced by more 
complex heterogeneity than TNNT1. Thus, the 
parametric methods are sensitive to the outliers and 
tend to produce false negatives (e.g., TNNT1, LALBA 
and DLK1) or false positives (e.g., MYLPF, with its 
rank changed from the 1st to 8,914th in edgeR; Fig. 1g). 
Seriously, multidimensional scaling shows that the 
removed tumor sample completely mixes with the 
others (Fig. 1h) and is unlikely to be detected and 
removed prior to differential expression analysis. 

We then introduced noises by randomly 
permuting the gene labels in a proportion of samples 
(1%, 5% or 10%). We assume that, in the context of 
large samples, the overall or real result should not be 
affected by a small fraction of “noisy” samples, if the 
method can handle heterogeneity well. Besides the 
above-mentioned methods, another new-developed 
method, Voom [26], was included into analysis. As 
expected, CVAA works the best with the smallest 
gene rank difference among these methods, followed 
by Voom and edgeR, T-Test shows the worst 
performance (Fig. S1). 

CVAA can be applied to pan-cancer expression 
analysis 

The limited ability of the currently adopted 
methods in dealing with data containing extreme 
values suggests that a larger sample size unlikely 
assures a stable result. This problem becomes more 
serious in handling large-scale pan-cancer 
transcriptome data, which are highly heterogeneous 
with more outliers. In contrast, CVAA can be 
extended to pan-cancer analysis because it accounts 
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for both cancer type effect (diverse expression levels 
of a gene across cancer types) and change pattern 
effect (a gene being up-regulated in one cancer type 
but down-regulated in some others or vice versa) using 
log-linear model (Methods). We then applied CVAA 
to the RNA-Seq datasets of 5,540 samples (comprising 
4,909 tumors from 13 primary solid tumor types and 
631 non-cancerous tissues retrieved from TCGA 
(Table S1)), in order to determine the common gene 
dysregulation pattern across diverse cancer types and 
to obtain more insights into the underlying 
mechanism of the disease. 

To interpret the gene rank of CVAA and 
numerically describe the extent to which a gene is 
abnormally expressed across cancer types, we 

presented dysregulation frequency (DF) (Methods). 
For instance, ADH1B (ranked 1st) is suppressed in 
nearly all cancer types (Fig. 2a), and its DF in all 
tumor samples is 83.8%, much higher than the 10.0% 
in normal tissues. With the increase in ranking 
number, the tumor DF of a certain gene tends to 
decrease, for example, 78.0%, 61.6%, 64.0%, 48.2% and 
37.6% for MMP11 (2nd), ZBTTB16 (301th), PLAU1 
(501th), ESPN (1,001th) and PTOV1 (15,001th), 
respectively. This tendency supports the predictive 
power of CVAA. Indeed, comparing the average DFs 
of the top 500 genes (60.5%) with the 18,690 coding 
genes (38.0%), shows that these top 500 are much 
more frequently dysregulated across the 13 cancer 
types (Student's t-test, P = 2.40e-174). 

 

 
Figure 2. Differential expression spectra between tumors and normal tissues across the 13 cancer types. (a) Expression boxplot of selected genes ranked by the 
CVAA. Each row in the first column indicates gene symbol, rank number and LOD value, respectively. Y axis of mRNA levels is log2 scaled. (b) Expression profile of 
the top 500 genes across the 13 cancer types. As tissue-varied gene expression, original expression values of each gene are percentile ranked (Methods) within each 
cancer type (color bar on the left top). (c) Multidimensional scaling shows relative similarity among all samples, with the circled dots indicating the normal tissues.  
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We also adopted LOD value to indicate the 
overall change direction of a certain gene 
(up-regulation: LOD > 0, down-regulation: LOD < 0) 
in pan-cancer analysis, with the absolute value of 
LOD suggesting the consistency degree of expression 
change. The higher the absolute value, the greater the 
consistency is across cancer types. For example, as 
shown in Fig. 2a, MMP11 (2nd, LOD = 2.24) is 
up-regulated in virtually all 13 cancer types, ZBTB16 
(301th, LOD = -1.11) is down-regulated in 8 cancer 
types, whereas ESPN (1,001th, LOD = 0.30) is 
up-regulated in some cancer types (e.g., BLCA) but 
down-regulated in some others (e.g., KIRP). We notice 
that the top ranked genes tend to have greater 
absolute LOD values (Table S4). For example, 63% of 
the top 500 genes have absolute LOD values greater 
than 1, whereas this ratio decreases to 7% when all 
genes are considered, suggesting that most of the top 
500 genes are more consistently up- or 
down-regulated across cancer types. 

Common dysregulation changes in gene 
expression exist across diverse cancer types 

To further validate these results, we examined 
each of the 500 genes using Student's t-test within 
each cancer type. 398 genes are differentially 
expressed in at least 8 cancer types (P < 1e-6). At this 
significance level, 345 genes show consistent 
dysregulation directions in at least 8 cancer types, 
with 112 being up-regulated and 233 down-regulated 
(Table S5). Among these 500 genes, 91.7% (143/156) of 
the up-regulated genes and 47.1% (162/344) of the 
down-regulated genes have been reported to 
influence cancer cell proliferation, apoptosis, invasion 
or metastasis; and most are considered as oncogenes 
(OGs) or tumor suppressor genes (TSGs) (Tables S6 
and S7). Therefore, we chose these top 500 genes for 
subsequent analyses to examine the common 
transcriptional changes and their potential functional 
roles in cancers. 

Examining the expression levels of these 500 
genes in the 13 cancer types and the normal tissues 
revealed that the tumor expression profiles are 
evidently disturbed compared to the normal tissues 
(Fig. 2b), which is further supported by 
multidimensional scaling analysis (Fig. 2c). This 
pattern shows that the 13 cancer types share abundant 
similarities at the level of transcriptional alterations, 
despite their different organ origins. 

Gene Ontology (GO) terms revealed that these 
500 genes are of high relevance to the identified 
cancer hallmarks [9], such as cell cycle, cell 
proliferation, cell adhesion, angiogenesis and 
extracellular matrix (Table S8). We discovered many 
genes involved in other processes likely to be crucial 

for cancers, including metabolism (e.g., GLTU1, 
PDK4, HILPDA and GPD1) [27], epigenetic regulation 
(e.g., NCAPG, NCAPH and INMT) [28], and 
ubiquitination (e.g., UBE2, UHRF1 and DTL) [29]. GO 
analysis also identified many enriched terms related 
to tumor microenvironment, such as chemical 
homeostasis, glucose homeostasis, response to steroid 
hormone stimulus, and transport process (Table S8). 
Surprisingly, genes in these terms tend to be 
down-regulated. For example, the average LOD of 33 
genes enriched in chemical homeostasis is -1.16 (Table 
S4), suggesting that the imbalance of chemical 
homeostasis in cancers triggers mostly via 
suppressing the expression of relevant genes. 
Specifically, PPARG (ranked 443th, LOD = -0.78), a 
nuclear receptor gene, mediates glucose metabolism 
and influences tumor growth and metastasis [30]; its 
coactivator, PPARGC1A, is also identified here 
(ranked 452th, LOD = -1.26). Likewise, transporter 
genes involved in maintaining homeostasis are 
dysregulated as well, such as solute carrier family 
members (e.g., SLC12A1 and SLC6A4), water channel 
(e.g., AQP2, AQP4, AQP6 and AQP7), and sodium 
channel (e.g., SCNN1B and SCNN1G) (Table S4). We 
also identified many genes involved in immune 
responses, including immunoglobulin (e.g., SEMA3G 
[31], IGSF10, IGSF9 and VSIG2), chemokines and their 
receptors (e.g., CCL14, ACKR1, CCL21, CXCL12 [32], 
CXCL14 and CXCL2 [33]), and the complement 
system (e.g., C7 and Adipsin), suggesting a close link 
between native immunity and tumor development, 
thus providing potential new targets for anticancer 
immune therapy. 

Functional experiments validate crucial roles 
of the new DEGs in tumorigenesis 

To verify these findings, we further chose and 
study 3 frequently up-regulated genes (FAM111B, 
NCAPH and MFAP2; all LOD > 1), 2 
cancer-specifically dysregulated genes (MS4A15 and 
SUSD4; both LOD ~ 0; indicating both genes are 
up-regulated in some cancer types but 
down-regulated in some others) and 5 frequently 
down-regulated genes (ADH1B, Adipsin, AQP7, 
EMCN and CLIC5; all LOD < -1.1) (Fig. S2; Table S4). 
All the above 10 genes are rarely studied in cancers 
before. We then examined the effects of their gain- or 
loss-of-function on cell proliferation using lung 
(A549), colon (SW480 and SW620) and breast 
(MDA-MB-231 and MCF7) cancer cell lines. Our data 
show that manipulating the above 10 genes in 
directions opposite to their dysregulation patterns 
significantly restrains cell proliferation unanimously 
in all the examined cancer cell lines (Fig. 3a-f; Fig. 
S3a-S3d; Fig. S4a). Survival analysis over the 13 cancer 
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types suggests that low-expression of ADH1B (ranked 
1st and down-regulated) or high-expression of 
NCAPH (ranked 293th and up-regulated) is associated 
with poor survival (Fig. 3g). We then picked ADH1B 
and NCAPH for further functional study, and 
observed that knockdown of NCAPH or 
over-expression of ADH1B largely inhibits the growth 
of xenograft tumors (Fig. 3h) and significantly inhibits 
cell migration as shown by wound healing and 
trans-well assays (Fig. 3i-n; Fig. S3e-S3h; Fig. S5). 

To examine whether the protein expression 
levels of these genes are consistent with the mRNA 
levels in cancers, we next surveyed the protein 
expression and cellular location of ADH1B and 
NCAPH in NSCLC (including lung SCC and ADC) 
and the non-cancerous lung control tissue (NCLT) by 
immunohistochemical staining (IHC) (Table S10). The 
percentages of positive ADH1B expression in NSCLC 
and NCLT were 42.1% (99/235) and 82.4% (42/51), 
respectively. The expression of ADH1B protein in 
NCLT was significantly higher compared with 
NSCLC (P < 0.001) (Fig. 3q-r’ and s; Fig. S6). By 
contrast, the percentage of positive expression of 
NCAPH in lung cancer (47.2%, 111/235) was 
significantly higher than that in NCLT (31.4%, 16/51) 
(P < 0.05) (Fig. 3o-p’ and s; Fig. S6). Interestingly, we 
also observed that ADH1B shows higher expression 
levels in NSCLC without lymph node metastasis 
(LNM) than in NSCLC patients with LNM (P < 0.05; 
Table S9), which is in good agreement with our 
experimental finding that over-expression of ADH1B 
inhibits cancer cell migration (Fig. 3i-n; Fig. S3e-S3h; 
Fig. S5). 

Discussion 
In this study, we developed a new 

method—CVAA, which works without normalization 
and distribution assumption, and applied it to 
large-scale pan-cancer transcriptome data. Besides the 
well-documented tumor genes and pathways, we also 
identified and validated several crucial but rarely 
explored cancer-associated genes and processes. For 
example, ADH1B (ranked 1st and down-regulated in 
approximately 80% of tumor samples) encodes an 
alcohol dehydrogenase, and other members of the 
alcohol dehydrogenase family are also 
down-regulated, such as ADH1A (ranked 343th, LOD 
= -1.50) and ADH1C (ranked 110th, LOD = -1.36). Our 
experiments verified the ability of ADH1B to restrain 
cancer cells, indicating that inactivation of alcohol 
dehydrogenase plays a crucial role in tumorigenesis. 
We also found that most transporter genes are 
down-regulated, and that over-expressing a chloride 
channel (CLIC5) or a water channel gene (AQP7) 

significantly suppressed cancer cell proliferation, 
suggesting that altering the chemical transport 
process in tissues may be crucial for carcinogenesis. 
Interestingly, we identified that several genes (i.e., 
MASP1, C7 and Adipsin), involved in the complement 
system, are frequently down-regulated (all LOD < 
-0.93). Albeit the role of complement system in tumor 
growth remaining disputable [34], over-expressing 
Adipsin can significantly inhibit proliferation of 
multiple cancer cell lines (Fig. 3a-f and Fig. S3a-S3d), 
suggesting that targeting this process might be an 
effective way to restrain cancer cells. 

Thus we have uncovered a number of common 
gene expression alterations, including the hidden 
ones, across diverse cancer types, which likely 
constitute a molecular basis for the hallmarks of solid 
cancers [9]. Although the mechanisms triggering or 
driving these alterations remain to be elucidated, their 
clinical implications are profound. By examining the 
association between clinical features and 
dysregulation events of the top 500 genes across all 
tumor samples, we identified 457 genes to be 
significantly associated with tumor stage (all P < 1e-4, 
Chi-squared test) and 223 genes with vital status 
(deceased or living) (all P < 1e-4, Fisher's exact test) 
(Table S11). Survival analysis revealed that 136 genes 
show significant association with poor survival (all P 
< 1e-4, hazard ratio (HR) > 1) and 12 genes with better 
survival (all P < 1e-4, HR < 1) (Table S10). Next, we 
examined whether associations exist between clinical 
features and numbers of dysregulated genes in 
individuals. As shown in Fig. 4a, tumors, regardless 
of their stages (stages I - IV), have more dysregulated 
genes than the normal tissues (Student's t-test, P < 
1.1e-16). Specifically, 96.3% of the tumors carry more 
than 100 dysregulated genes, in sharp contrast with 
the value (9.5%) of the normal samples. As expected, 
patients with more dysregulated genes show poorer 
survival (P = 0.0007, HR: 1.26, 95% CI: 1.10 - 1.45) (Fig. 
4b), and deceased patients carry more dysregulated 
genes than the living ones (Student's t-test, P = 
1.14e-15; Fig. 4c). 

Taken together, here we provided evidence 
showing that CVAA can overcome the potential 
problems raised by normalization or distribution 
assumption and thus allows us to identify the hidden 
common changes of transcription and biological 
processes in various solid tumors, despite the 
existence of intra- and inter-tumor heterogeneity. 
Since CVAA depends only on comparisons among 
variables within individual samples, its success in the 
large-scale analysis of cancer transcriptomes suggests 
that this method could be applicable for other diseases 
as well as other types of high throughput datasets. 
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Figure 3. Functional study of 10 picked genes from the top 500 dysregulated ones in different tumor cell lines. (a-c) 3 up-regulated genes (FAM111B, NCAPH and MFAP2) and 2 
cancer-specifically dysregulated genes (MS4A15 and SUSD4) were inhibited by 2 independent shRNAs targeting to different mRNA regions (indicated by different colors with or 
without black circle), respectively. Here, representative day 4 cell numbers normalized to scramble shRNA cells (considered as 1) were shown, *P < 0.05. (d-f) 5 down-regulated 
genes (ADH1B, Adipsin, AQP7, CLIC5 and EMCN) were over-expressed, respectively. The cell numbers were counted and normalized to pCDH-Vec control cells (considered as 
1), *P < 0.05. (g) Survival curves of ADH1B and NCAPH across cancer types (NCAPH, P = 2.22e-16; ADH1B, P = 6.75e-06). Normal/altered: a gene is expressed in the normal/altered 
levels in a sample (see Methods). (h, left) Representative photographs captured with visible light of the animals corresponding to each treatment group at day 28th after A549-luc 
cell injection. White arrow (#1 mouse) indicates scramble shRNA control, dark arrow (#1 mouse) indicates NCAPH KD; white arrow (#2 mouse) indicates pCDH-Vec control, 
dark arrow (#2 mouse) indicates ADH1B ove; total 2×106 cells for each line were injected. (h, right) Representative whole body fluorescence imaging showing a significant 
reduction in tumor size when NCAPH was depleted or ADH1B was over-expressed. (i, k, m) Representative wound healing assay using indicated cancer cell lines at 0 or 24 hours, 
respectively. (j, l, n) Representative trans-well cell migration assay using indicated cell lines at 24 hours. (o-r’) IHC, DAB staining, 200X. (o-o’, q-q’) The positive and negative 
expression patterns of NCAPH or ADH1B protein, respectively, were shown in the NSCLC (p-p’, r-r’) The positive and negative expression patterns of NCAPH or ADH1B protein, 
respectively, were shown in the NCLT. (s) Quantification data for IHC. All the experiments were repeated at least 3 times, representative images were shown. 
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Figure 4. Clinical association analysis across cancer types. (a) Number of DEGs in normal tissues and tumors at stages I – IV. (b) Patients with more DEGs (> 320) 
show poor survival. (c) Deceased patients have more DEGs than the livings. 
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