Supplementary Material for

Cancer radiotheranostics targeting carbonic anhydrase-IX with ¹¹¹In- and

⁹⁰Y-labeled ureidosulfonamide scaffold for SPECT imaging and

radionuclide-based therapy

Shimpei Iikuni,¹ Masahiro Ono,¹* Hiroyuki Watanabe,¹ Yoichi Shimizu,¹ Kohei Sano,¹ Hideo Saji¹

¹Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.

*To whom correspondence should be addressed: Phone: +81-75-753-4608, Fax: +81-75-753-4568, e-mail: ono@pharm.kyoto-u.ac.jp

Methods

General

All reagents were obtained commercially and used without further purification unless otherwise indicated. ¹¹¹InCl₃ and ⁹⁰YCl₃ were purchased from Nihon Medi-Physics (Tokyo, Japan) and Eckert & Ziegler Radiopharma GmbH (Berlin, Germany), respectively. W-Prep 2XY (Yamazen, Osaka, Japan) was used for silica gel column chromatography on a Hi Flash silica gel column (40 µm, 60 Å, Yamazen). ¹H and ¹³C NMR spectra were recorded on a JNM-ECS400 (JEOL, Tokyo, Japan) with tetramethylsilane as an internal standard. Coupling constants are reported in Hertz. Multiplicity was defined as singlet (s), doublet (d), or multiplet (m). High-resolution mass spectrometry (HRMS) was conducted with an LCMS-IT-TOF (SHIMAZDU, Kyoto, Japan). Reversed-phase high-performance liquid chromatography (RP-HPLC) was performed with a Shimadzu system (SHIMADZU, an LC-20AT pump with an SPD-20A UV detector, $\lambda = 254$ nm) with a Cosmosil C₁₈ column (Nacalai Tesque, Kyoto, Japan, $5C_{18}$ -PAQ, 4.6×250 mm) delivered at a flow rate of 1.0 mL/min using a solvent of H₂O/MeCN/trifluoroacetic acid (TFA) [90:10:0.1 (0 min) to 60:40:0.1 (30 min)] as the mobile phase. The specific radioactivity was determined as the ratio of radioactivity collected at the retention time of a product during the RP-HPLC

purification to the mass corresponding to the area under the curve of the UV absorption.

Chemistry

Synthesis

2,2'-(4,10-bis(2-(*tert*-butoxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,7-diyl)diac etic acid (**5**)

Compound 5 was prepared in five steps from cyclen according to a previous report [54].

Synthesis of 4-(3-(4-aminophenyl)ureido)benzenesulfonamide (6) [55]

A solution of sulfanilamide (172 mg, 1.0 mmol) and 1,1'-carbonyldiimidazole (195 mg, 1.2 mmol) in dimethyl sulfoxide (DMSO) (5 mL) was stirred at room temperature for 3 h. After confirming the completion of the reaction by thin-layer chromatography monitoring, the reaction mixture was lyophilized overnight. The residue was resolved in MeCN (10 mL), followed by the addition of 1,4-phenylenediamine (130 mg, 1.2 mmol). The reaction mixture was stirred at room temperature for 1 h. After being evaporated to dryness, the residue was purified by silica gel chromatography (CHCl₃/MeOH = 10:1) to give 71 mg of **6** (23%). ¹H NMR (400 MHz, DMSO- d_6) δ 9.98 (s,1H), 9.86 (s, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.69 (d, *J* = 8.8 Hz, 2H), 7.35 (d, *J* =

of

8.8 Hz, 2H), 7.28 (s, 2H). ¹³C NMR (100 MHz, DMSO- d_6) δ 152.8, 143.5, 139.7, 137.0, 127.2 (2C), 126.0, 123.8 (2C), 119.6 (2C), 117.9 (2C). HRMS (ESI): *m/z* calculated for C₁₃H₁₅N₄O₃S⁺ (MH⁺), 307.0859; found, 307.0852.

Synthesis

2,2',2''-(10-(2-oxo-2-((4-(3-(4-sulfamoylphenyl)ureido)phenyl)amino)ethyl)-1,4,7,10-t etraazacyclododecane-1,4,7-triyl)triacetic acid (**7**)

To a solution of **5** (22 mg, 42 µmol) in dimethylformamide (DMF) (10 mL) were added **6** (13 mg, 42 µmol), 1-hydroxybenzotriazole (HOBT) hydrate (13 mg, 84 µmol), 1-ethyl-3-(dimethylaminopropyl)carbodiimide (EDC) hydrochloride (16 mg, 84 µmol), and triethylamine (12 µL, 84 µmol). The solution was stirred at room temperature for 48 h. After removing the solvents, ethyl acetate (50 mL) was added. The mixture was washed successively with 0.5 M NaOH (50 mL × 2), saturated NaHCO₃ water (50 mL), and brine (50 mL). After being evaporated to dryness, TFA (5 mL) was added to the residue and the solution was stirred at room temperature for 6 h. After concentration of the solution, the residue was purified by RP-HPLC using a solvent of H₂O/MeCN/TFA [90:10:0.1 (0 min) to 60:40:0.1 (30 min)] as the mobile phase to give 6 mg of **7** (21%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.30 (s, 1H), 9.76 (s, 1H), 9.51 (s, 1H), 7.71 (d, *J* =

of

8.8 Hz, 2H), 7.63 (d, J = 8.8 Hz, 2H), 7.51 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.8 Hz, 2H), 7.20 (s, 2H), 3.32 (s, broad, 8H), 3.22 (s, broad, 8H), 2.50–2.48 (m, 8H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.7, 158.4, 152.5, 143.3, 136.6, 126.8 (4C), 118.75 (2C), 118.70 (2C), 117.9 (2C), 117.3 (2C), 40.2 (4C), 40.0 (8C). HRMS (ESI): m/z calculated for $C_{29}H_{41}N_8O_{10}S^+$ (MH⁺), 693.2661; found, 693.2646.

Synthesis

of

2,2'-(4,10-bis(2-oxo-2-((4-(3-(4-sulfamoylphenyl)ureido)pheny)amino)ethyl)-1,4,7,10-t etraazacyclododecane-1,7-diyl)diacetic acid (**8**)

A solution of **5** (59 mg, 0.12 mmol), **6** (71 mg, 0.23 mmol), HOBT hydrate (35 mg, 0.23 mmol), EDC hydrochloride (44 mg, 0.23 mmol), and triethylamine (32 μ L, 0.23 mmol) in DMF (10 mL) was stirred at room temperature for 26 h. After removing the solvents, ethyl acetate (50 mL) was added. The mixture was washed successively with 0.5 M NaOH (50 mL × 2), saturated NaHCO₃ water (50 mL), and brine (50 mL). After being evaporated to dryness, TFA (5 mL) was added to the residue and the solution was stirred at room temperature for 4 h. After concentration of the solution, the residue was purified by RP-HPLC using a solvent of H₂O/MeCN/TFA [90:10:0.1 (0 min) to 60:40:0.1 (30 min)] as the mobile phase to give 19 mg of **8** (17%). ¹H NMR (400 MHz,

DMSO- d_6) δ 10.46 (s, 2H), 9.54 (s, 2H), 9.30 (s, 2H), 7.70 (d, J = 8.8 Hz, 4H), 7.60 (d, J = 8.8 Hz, 4H), 7.52 (d, J = 8.8 Hz, 4H), 7.44 (d, J = 8.8 Hz, 4H), 7.19 (s, 4H), 4.13 (s, broad, 4H), 3.78 (s, broad, 8H), 3.64 (s, broad, 4H), 3.45 (s, broad, 4H), 3.15 (s, broad, 4H). ¹³C NMR (100 MHz, DMSO- d_6) δ 158.7, 158.4, 152.4 (2C), 143.2 (2C), 136.6 (2C), 135.7 (2C), 132.7 (2C), 126.8 (4C), 120.1 (4C), 118.8 (4C), 118.2, 117.4 (4C), 115.3, 40.2 (4C), 40.0 (8C). HRMS (ESI): m/z calculated for $C_{42}H_{53}N_{12}O_{12}S_2^+$ (MH⁺), 981.3342; found, 981.3351.

Synthesis of [^{113/115}In]US1 (**9**)

To a solution of **7** (100 mg, 0.14 mmol) in DMSO (1 mL) were added InCl₃ anhydrous (250 mg, 1.13 mmol) and 2-(*N*-morpholino)ethanesulfonic acid (MES) buffer (0.1 M, pH 5.5, 10 mL). The solution was stirred at 60 °C for 6 h, and the mixture was purified by RP-HPLC using a solvent of H₂O/MeCN/TFA [95:5:0.1 (0 min) to 65:35:0.1 (30 min)] as the mobile phase to give 40 mg of **9** (35%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.88 (s, 1H), 9.36 (s, 1H), 9.14 (s, 1H), 7.65 (d, *J* = 8.8 Hz, 2H), 7.56 (d, *J* = 8.8 Hz, 2H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.39 (d, *J* = 8.8 Hz, 2H), 7.15 (s, 2H), 3.05 (s, broad, 8H), 2.77 (s, broad, 8H), 2.46–2.43 (m, 8H). ¹³C NMR (100 MHz, DMSO-*d*₆) δ 171.3 (2C), 158.6, 158.2, 152.4, 143.1, 136.7, 126.8 (4C), 120.1 (2C), 118.6 (2C), 117.4 (2C), 40.4

(8C), 40.2 (2C), 40.0 (2C). HRMS (ESI): m/z calculated for $C_{29}H_{38}InN_8O_{10}S^+$ (M⁺), 805.1465; found, 805.1450.

Synthesis of [^{113/115}In]US2 (**10**)

To a solution of **8** (10 mg, 10 µmol) in DMSO (1 mL) were added InCl₃ anhydrous (23 mg, 0.10 mmol) and MES buffer (0.1 M, pH 5.5, 10 mL). The solution was stirred at 60 °C for 12 h, and the mixture was purified by RP-HPLC using a solvent of H₂O/MeCN/TFA [90:10:0.1 (0 min) to 60:40:0.1 (30 min)] as the mobile phase to give 9 mg of **10** (80%). ¹H NMR (400 MHz, DMSO- d_6) δ 10.93 (s, 2H), 9.33 (s, 2H), 9.11 (s, 2H), 7.71 (d, *J* = 8.8 Hz, 4H), 7.60 (d, *J* = 8.8 Hz, 4H), 7.49 (d, *J* = 8.8 Hz, 4H), 7.44 (d, *J* = 8.8 Hz, 4H), 7.20 (s, 4H), 2.83 (s, broad, 8H), 2.52–2.49 (m, 16H). ¹³C NMR (100 MHz, DMSO- d_6) δ 152.3 (2C), 143.0 (2C), 136.7 (2C), 136.4 (2C), 131.7 (2C), 126.8 (4C), 120.8 (4C), 118.5 (4C), 117.4 (4C), 40.4 (16C). HRMS (ESI): *m/z* calculated for C₄₂H₅₀InN₁₂O₁₂S₂⁺ (M⁺), 1093.2146; found, 1093.2151.

Radiolabeling

For ¹¹¹In-labeling, an ¹¹¹InCl₃ (200 μ L) solution was mixed with MES buffer (0.01 or 0.1 M, pH 5.5, 600 μ L) or NaOAc buffer (0.01 or 0.1 M, pH 6.0, 600 μ L) and

pre-incubated at room temperature for 15 min. To this solution was added 50 μ L of the precursor (**7** or **8**) in H₂O (final 0.05 mM), and the mixture was incubated at room temperature, 60 °C, or 90 °C for 30 min. After cooling to room temperature, the mixture was purified by RP-HPLC. The ¹¹¹In-labeled compound was analyzed by analytical RP-HPLC on a Cosmosil C₁₈ column (5C₁₈-PAQ, 4.6 × 250 mm) with a solvent of H₂O/MeCN/TFA [90:10:0.1 (0 min) to 60:40:0.1 (30 min)] as the mobile phase at a flow rate of 1.0 mL/min (**Table S1**).

For ⁹⁰Y-labeling, a ⁹⁰YCl₃ solution (100 μ L) was mixed with 0.1 M MES buffer (pH 5.5, 300 μ L) and pre-incubated at room temperature for 15 min to give a ⁹⁰Y-MES solution. Compound **8** in H₂O (final 0.04 mM, 50 μ L) was added to the ⁹⁰Y-MES solution (400 μ L), and then the mixture was incubated at 90 °C for 30 min. After cooling to room temperature, the mixture was purified by RP-HPLC. The ⁹⁰Y-labeled compound was analyzed by analytical RP-HPLC on a Cosmosil C₁₈ column (5C₁₈-PAQ, 4.6 × 250 mm) with a solvent of H₂O/MeCN/TFA [90:10:0.1 (0 min) to 60:40:0.1 (30 min)] as the mobile phase at a flow rate of 1.0 mL/min.

Measurement of partition coefficient

The experimental determination of partition coefficients was performed in 1-octanol

and phosphate-buffered saline (PBS) (pH 7.4). The two phases were presaturated with each other. 1-Octanol (3 mL) and PBS (3 mL) were pipetted into a 15-mL test tube containing [111In]US1 or [111In]US2 (50 kBq, 130.7 GBq/µmol for [111In]US1 and 59.5 GBq/umol for [¹¹¹In]US2). The test tube was vortexed for 2 min and centrifuged (4,000 ×g, 5 min). Aliquots (0.5 mL) from the 1-octanol and PBS phases were transferred into two test tubes for counting. The remaining PBS phase (1 mL), newly prepared 1-octanol (3 mL), and PBS (2 mL) were pipetted into a new test tube. The vortexing, centrifuging, and counting were repeated until consistent partition coefficient values were obtained (usually the sixth partition). The amount of radioactivity in each tube was measured with a γ counter (Wallac 1470 Wizard; PerkinElmer, Massachusetts, U.S.A.). The partition coefficient calculated using equation: log P_{ow} was the = $\log[count_{1-octanol}/count_{PBS}].$

Biodistribution study in normal mice

A saline solution (100 μ L) of [¹¹¹In]US2 (40 kBq, 177.8 GBq/ μ mol) was directly injected into the tail vein of ddY mice (male, 5 weeks old). The mice were sacrificed at 1, 4, 8, and 24 h postinjection. The blood, spleen, pancreas, stomach, intestines, kidneys, liver, heart, lungs, brain, and muscle were collected. Each organ was weighed and the

radioactivity was measured using a γ counter (PerkinElmer). The % injected dose/g of samples was calculated by comparing the sample counts with the count of the initial dose.

Temperature	Solvent	Radiochemical yield (%)
Room temperature	0.01 M NaOAc (pH 6.0)	0.0
	0.1 M NaOAc (pH 6.0)	1.5
	0.01 M MES (pH 5.5)	0.5
	0.1 M MES (pH 5.5)	1.2
60 °C	0.01 M NaOAc (pH 6.0)	6.5
	0.1 M NaOAc (pH 6.0)	12.0
	0.01 M MES (pH 5.5)	0.7
	0.1 M MES (pH 5.5)	23.2
90 °C	0.01 M NaOAc (pH 6.0)	47.7
	0.1 M NaOAc (pH 6.0)	57.9
	0.01 M MES (pH 5.5)	7.0
	0.1 M MES (pH 5.5)	66.0

Table S1. Radiochemical Yields of [¹¹¹In]US2 under the Given Conditions

Table S2. RP-HPLC Retention Times and Partition Coefficients of ¹¹¹In, ^{113/115}In,

Compound	Retention time (min)*	$\operatorname{Log} P_{ow}$
Compound 7	13.2	Not determined
[¹¹¹ In]US1	10.5	-3.38 ± 0.09
[^{113/115} In]US1	10.3	Not determined
Compound 8	19.1	Not determined
[¹¹¹ In]US2	17.7	-2.81 ± 0.01
[^{113/115} In]US2	17.6	Not determined
[⁹⁰ Y]US2	17.6	Not determined

and ⁹⁰Y Complexes and Corresponding Precursors

*RP-HPLC on a Cosmosil C_{18} column (5 C_{18} -PAQ, 4.6 × 250 mm) with a solvent of H₂O/MeCN/TFA [90:10:0.1 (0 min) to 60:40:0.1 (30 min)] as the mobile phase at a flow rate of 1.0 mL/min.

	Time after injection (h)				
Organs	1	4	8	24	24 + Block*
Blood	1.07 ± 0.25	0.12 ± 0.01	0.12 ± 0.01	0.03 ± 0.01	0.02 ± 0.00
Spleen	0.61 ± 0.08	0.36 ± 0.12	0.38 ± 0.03	0.56 ± 0.05	0.30 ± 0.04
Pancreas	0.41 ± 0.14	0.10 ± 0.03	0.10 ± 0.03	0.08 ± 0.01	0.04 ± 0.02
Stomach [†]	1.44 ± 0.47	0.31 ± 0.27	0.89 ± 0.61	0.15 ± 0.08	0.43 ± 0.27
Intestine	2.00 ± 1.16	8.22 ± 2.47	17.60 ± 7.39	2.69 ± 1.29	2.58 ± 1.03
Kidney	6.85 ± 1.36	3.71 ± 0.69	3.41 ± 0.55	3.25 ± 0.39	0.93 ± 0.11
Liver	1.25 ± 0.18	0.85 ± 0.17	0.87 ± 0.08	0.94 ± 0.09	0.45 ± 0.06
Heart	0.54 ± 0.04	0.09 ± 0.05	0.09 ± 0.03	0.12 ± 0.03	0.04 ± 0.03
Lung	1.55 ± 0.29	0.21 ± 0.07	0.22 ± 0.03	0.21 ± 0.08	0.08 ± 0.04
Brain	0.06 ± 0.01	0.03 ± 0.01	0.03 ± 0.01	0.02 ± 0.00	0.02 ± 0.01
HT-29	2.12 ± 0.46	0.35 ± 0.09	0.31 ± 0.07	0.27 ± 0.04	0.18 ± 0.07
MDA-MB-231	1.48 ± 0.63	0.64 ± 0.28	0.27 ± 0.03	0.21 ± 0.02	0.11 ± 0.03
Muscle	0.39 ± 0.08	0.08 ± 0.03	0.09 ± 0.03	0.08 ± 0.02	0.04 ± 0.01
HT-29/Blood	2.07 ± 0.61	2.80 ± 0.60	2.65 ± 0.71	10.03 ± 3.01	9.45 ± 4.66
HT-29/Muscle	5.49 ± 1.07	4.95 ± 2.80	3.75 ± 1.14	3.74 ± 0.98	4.26 ± 1.69
HT-29/MDA-MB-231	1.53 ± 0.42	0.59 ± 0.19	1.14 ± 0.20	1.27 ± 0.22	1.59 ± 0.63

Table S3. Radioactivity of Extracted Organs after Intravenous Injection of

[¹¹¹In]US1 in the HT-29 and MDA-MB-231 Tumor-Bearing Mice

Values are expressed as % injected dose per gram of tissue. Each value is the mean \pm standard deviation of five animals at each interval. *Coinjection of acetazolamide (10 mg/kg). [†]Values are expressed as % injected dose.

1]032 in the 111-29 and MDA-MD-231 1 unoi-dealing Mice						
	Time after injection (h)					
Organs	1	4	8	24	24 + Block*	
Blood	4.17 ± 0.56	2.85 ± 0.50	1.09 ± 0.15	0.17 ± 0.05	0.09 ± 0.02	
Spleen	2.82 ± 0.44	2.01 ± 0.21	1.89 ± 0.40	1.42 ± 0.23	0.80 ± 0.07	
Pancreas	3.22 ± 0.54	1.80 ± 0.19	1.32 ± 0.23	0.43 ± 0.10	0.17 ± 0.04	
$Stomach^\dagger$	8.86 ± 0.98	6.64 ± 0.86	4.90 ± 0.70	1.25 ± 0.13	0.30 ± 0.03	
Intestine	6.86 ± 1.24	6.64 ± 0.79	5.76 ± 1.92	1.51 ± 0.31	0.43 ± 0.13	
Kidney	18.59 ± 0.53	12.96 ± 1.27	12.20 ± 1.49	9.40 ± 1.42	2.37 ± 0.22	
Liver	4.17 ± 0.46	3.90 ± 0.38	3.80 ± 0.34	3.93 ± 0.64	1.87 ± 0.43	
Heart	2.78 ± 0.27	1.59 ± 0.16	1.07 ± 0.21	0.58 ± 0.10	0.20 ± 0.04	
Lung	8.76 ± 0.53	4.99 ± 0.20	3.64 ± 0.91	0.99 ± 0.22	0.48 ± 0.10	
Brain	0.17 ± 0.03	0.13 ± 0.01	0.11 ± 0.01	0.07 ± 0.01	0.02 ± 0.00	
HT-29	$4.57 \pm 0.21^{\ddagger}$	$4.51 \pm 0.62^{\ddagger}$	$3.78 \pm 0.54^{\ddagger}$	$1.72 \pm 0.20^{\ddagger, \$}$	0.63 ± 0.03	
MDA-MB-231	1.64 ± 0.28	1.93 ± 0.38	2.13 ± 0.40	1.34 ± 0.17	0.63 ± 0.10	

Table S4. Radioactivity of Extracted Organs after Intravenous Injection of

[¹¹¹In]US2 in the HT-29 and MDA-MB-231 Tumor-Bearing Mice

 1.62 ± 0.24

 1.11 ± 0.16

 2.86 ± 0.43

 2.84 ± 0.41

Muscle

HT-29/Blood

HT-29/Muscle

HT-29/MDA-MB-231

Values are expressed as % injected dose per gram of tissue. Each value is the mean \pm standard deviation of five animals at each interval. *Coinjection of acetazolamide (10 mg/kg). [†]Values are expressed as % injected dose. [‡]*P* < 0.05 compared with MDA-MB-231 each time. [§]*P* < 0.001 compared with 24 h + Block (Student's *t*-test).

 0.82 ± 0.12

 1.61 ± 0.30

 5.62 ± 1.45

 2.38 ± 0.34

 0.59 ± 0.04

 3.47 ± 0.37

 6.41 ± 1.16

 1.81 ± 0.32

 $0.07 \, \pm \, 0.02$

 7.06 ± 1.70

9.64 ± 4.15

 1.01 ± 0.14

 0.23 ± 0.06

 10.78 ± 2.80

 7.75 ± 1.98

 1.31 ± 0.30

		Time after injection (h)			
Organs	1	4	8	24	
Blood	2.34 ± 0.46	1.36 ± 0.16	1.02 ± 0.19	0.10 ± 0.01	
Spleen	1.46 ± 0.31	1.00 ± 0.15	0.88 ± 0.15	0.45 ± 0.08	
Pancreas	3.07 ± 1.05	2.20 ± 0.57	1.38 ± 0.31	0.47 ± 0.17	
Stomach*	8.05 ± 4.22	7.00 ± 1.85	3.92 ± 1.37	1.18 ± 0.27	
Intestine	2.26 ± 0.63	2.05 ± 0.73	2.57 ± 0.78	0.69 ± 0.15	
Kidney	11.39 ± 2.00	11.11 ± 1.34	9.88 ± 1.49	7.11 ± 1.40	
Liver	2.04 ± 0.26	2.17 ± 0.08	3.16 ± 0.57	1.77 ± 0.24	
Heart	2.02 ± 0.43	1.32 ± 0.16	1.04 ± 0.21	0.39 ± 0.04	
Lung	6.35 ± 1.76	4.17 ± 0.64	2.85 ± 0.77	0.68 ± 0.16	

Table S5. Radioactivity of Extracted Organs after Intravenous Injection of

Values are expressed as % injected dose per gran	n of tissue. Each	value is the	mean ±
standard deviation of five animals at each interval	. *Values are exp	pressed as %	injected

 0.76 ± 0.10

 1.14 ± 0.17

 0.13 ± 0.02 | 0.11 ± 0.02 | 0.10 ± 0.01 | 0.07 ± 0.02

 0.58 ± 0.08

 0.22 ± 0.06

[¹

Brain

Muscle

dose.

Scheme S1. Synthetic Route of the Precursor for Radiolabeling of the

Ureidosulfonamide Derivatives

Scheme S2. Synthetic Route of the Indium-113/115 Complex with One or Two

Scaffolds of Ureidosulfonamide

Scheme S3. Radiolabeling of the Indium-111 and Yttrium-90 Complex with One or

Two Scaffolds of Ureidosulfonamide

Figure S1. Cell binding assay with [¹¹¹**In**]**US1 and** [¹¹¹**In**]**US2.** (**A**) Western blotting analysis of RCC4-VHL and RCC4-VA cells under normoxic (N) and hypoxic (H) conditions. GAPDH was used as a loading control. (**B**) In vitro uptake of [¹¹¹In]US1 into cells. (**C**) In vitro uptake of [¹¹¹In]US2 into cells. Values are expressed as the mean \pm standard error of six independent experiments. **P* < 0.005 as compared with uptake into RCC4-VA cells under normoxic conditions, [†]*P* < 0.05 as compared with uptake into RCC4-VA cells under hypoxic conditions (Student's *t*-test).

Figure S2. SPECT/CT images of the HT-29 and MDA-MB-231 tumor-bearing mice after [¹¹¹**In**]**US2 administration.** (**A**) Planes of collected images from mice. (**B**) CT-only, SPECT-only, and SPECT/CT fusion images after [¹¹¹In]US2 administration. (**C**) CT-only, SPECT-only, and SPECT/CT fusion images after [¹¹¹In]US2 administration with acetazolamide (10 mg/kg). Yellow and white arrows indicate the HT-29 and MDA-MB-231 tumors, respectively.

Figure S3. Maximum intensity projection of SPECT/CT images of the HT-29 and MDA-MB-231 tumor-bearing mice after [¹¹¹**In**]**US2 administration.** (**A**) Maximum intensity projection of SPECT/CT images after [¹¹¹In]US2 administration. (**B**) Maximum intensity projection of SPECT/CT images after [¹¹¹In]US2 administration with acetazolamide (10 mg/kg). Yellow and white arrows indicate the HT-29 and MDA-MB-231 tumors, respectively.