## **Supporting Information**

## Dual-functional protein for one-step production of a soluble and targeted fluorescent dye

Yunjie Xiao<sup>1, \*</sup>, Qian Zhang<sup>2, \*</sup>, Yanyan Wang<sup>3, \*</sup>, Bin Wang<sup>1</sup>, Fengnan Sun<sup>2</sup>, Ziyu Han<sup>3</sup>,

Yaqing Feng<sup>4</sup>, Haitao Yang<sup>1,5</sup>, Shuxian Meng<sup>2⊠</sup> and Zefang Wang <sup>1⊠</sup>

- 1. School of Life Sciences, Tianjin University, Tianjin 300072, China.
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
- College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
- 4. Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.
- Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin 300457, China.

\* These authors contributed equally to this work.

Corresponding Authors : Prof. Zefang Wang; School of Life Sciences, Tianjin University, Tianjin 300072, China; Tel: +86-22-27403096; E-mail: zefangwang@tju.edu.cn;

Prof. Shuxian Meng, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Tel: +86-1303433353; E-mail: msxmail@tju.edu.cn.

This file includes: Table S1, Figure S1-S8

| Formulation     | Concentration<br>(mg/mL) | Zeta Potential<br>(mV)    |
|-----------------|--------------------------|---------------------------|
| RGD-HFBI/BODIPY | 0.05                     | $-16.4\pm0.96$            |
|                 | 0.10                     | $-25.1 \pm 1.87$          |
|                 | 0.15                     | $-31.7 \pm 1.93$          |
|                 | 0.20                     | $-19.3 \pm 1.08$          |
| HFBI/BODIPY     | 0.05                     | $-16.1 \pm 1.02$          |
|                 | 0.10                     | $-28.4\pm2.12$            |
|                 | 0.15                     | $-23.3 \pm 1.25$          |
|                 | 0.20                     | $\textbf{-9.82} \pm 0.51$ |

**Table S1.** Zeta potential of RGD-HFBI- and native HFBI-treated BODIPY dye in serum.



Figure S1. Tricine-SDS-PAGE results of selected positive clones of RGD-HFBI.



Figure S2. WCA measurements (after extensive washing by pure water) of polystyrene and mica

before and after modification with RGD-HFBI and native HFBI.



**Figure S3**. <sup>13</sup>C NMR of the BODIPY derivative.







Figure S5. MS (ESI) of the BODIPY derivative.



Figure S6. Stability analysis of RGD-HFBI- and native HFBI-treated BODIPY dye within 20 days.



Figure S7. A) BODIPY dye was dispersed in H<sub>2</sub>O, DMSO, HFBI and RGD-HFBI respectively. B)

TEM images of BODIPY dispersed in different solvents (H<sub>2</sub>O, DMSO, HFBI and RGD-HFBI). **C**) Particles size of DMSO, native HFBI- and RGD-HFBI-treated BODIPY dye.



Figure S8. A) The stability assay of the RGD-HFBI/BODIPY and HFBI/BODIPY complex in vitro

and in vivo. B-C) Particles size of RGD-HFBI- and native HFBI-treated BODIPY dye in serum.