1	Supplementary Materials					
2 3	Table S1. Standard delineation protocol					
4						
5	<u>1.</u> <u>Reconstruction method</u>					
6	According to Makris et al. [1]					
7						
8	2. <u>Analysis plan</u>					
9	PET image analysis of scans performed 4 days post tracer injection.					
10						
11	Targets to select for PET quantification:					
12	• Tumor lesions					
13	 Background regions (=healthy organs/tissue) 					
14 15	Whole organs					
15	PET quantification parameters					
17	 Background regions: %ID/kg 					
18	 Tumor lesions: volume (mL) 					
19	 Whole organs: %ID/kg 					
20						
21	Software					
22	• A medical imaging data examiner (AMIDE, [2])					
23						
24	Targets					
25	Lesions					
26	 All visible lesions on PET and/or on diagnostic CT scan 					
27						
28 20	Background regions					
29 30	 For each background organ a background area should be quantified. Use an sphericalVOI (location and/or size of VOI might be adapted in case of 					
31	tumor locations) in at least 3 consecutive axial planes:					
32	 Brain 5 cm (left hemisphere, parietal) 					
33	 Lung 5 cm (right upper lobe, mediolateral) 					
34	• Aortic blood pool 2 cm (Aortic arch or thoracic aorta, highest region)					
35	 Muscle 5 cm (region right gluteus maximus/medius) 					
36	• Spleen 5 cm (representative region; 4 cm if 5 cm VOI is too big) and 2 cm					
37	(highest region)					
38	 Liver 5 cm (representative region) 					
39	 Kidney 2 cm (cortex of left kidney, highest region) 					
40	• Bone marrow 2 cm (L4 or L5)					

- 1 o Bone cortex 1 cm (femur cortex, right)
 - Intestine 2 cm (highest region)
 - Fat tissue 2 cm (abdominal region)
- 3 4

2

- 5 Whole organ analysis
- Only assess organs when there is no metastatic disease located in this certain
 organ
- 8 Organs of interest for whole organ analysis:
 - o Liver
- 9 10

11 Calculations

- 12 AMIDE output (mean activity concentration in Bq/cc) was used to calculate the
- 13 percentage injected dose per kilogram (%ID/kg) tissue of every VOI with the following
- 14 formula:

$$\% ID/kg = \frac{Activity \ concentration \ (Bq/kg)}{Injected \ activity \ (Bq)} * 100\%$$

15 Injected activity was corrected for decay between moment of tracer injection and time of

- 16 scanning (under the assumption of a tissue density of 1 kg/L).
- 17
- 18 Percentage organ and fat tissue tracer uptake was calculated using the following
- 19 formula:

 $Organ uptake \ (\%) = \frac{Activity \ concentration \ (Bq/gr) * Organ \ volume \ (gr)}{Injected \ activity \ (Bq)} * 100\%$

	⁸⁹ Zr-lumretuzumab	⁸⁹ Zr-MMOT0530A	⁸⁹ Zr-bevacizumab	⁸⁹ Zr-trastuzumab			
Pharmacokinetic parameters of monoclonal antibody							
Monoclonal antibody	Lumretuzumab	MMOT0530A	Bevacizumab	Trastuzumab			
IgG class	Humanized	Humanized IgG1	Humanized IgG1	Humanized IgG1			
0	glycoengineered IgG1ĸ	0	0	0			
Target	HER3	Mesothelin	VEGF	HER2			
Molecular weight (kDa)	150	150	150	150			
Linear kinetics	Elimination of	Modest degree of target	Linear	Non-linear elimination			
	lumretuzumab across	mediated clearance at	pharmacokinetics for				
	dose range 100 - 400 mg	doses < 1 mg/kg;	doses 1 - 10 mg/kg				
	is predominantly target	linear clearance across					
	mediated; PK	tested dose range of 0.2					
	approached linearity at	to 2.8 mg/kg for the					
	400 – 2,000 mg	q3w schedule					
Clearance	1.04 L/d (100 mg);	27 mL/d/kg	0.188 L/d - 0.220 L/d	0.111 L/d			
	0.264 L/d (>2000 mg)						
Volume of distribution	3.64 L (100 mg);	Vss = 68 mLl/kg	2.73 - 3.28 L	2.91 L			
	4.4 L (>2000 mg)						
Elimination half-life	2.4 d (100 mg);	2.1 - 3.7 d	18-20 d	28.5 d			
time	12 d (>400 mg)						
Reference	Meulendijks et al. [3]	Weekes et al. [4]	European public assessment report of Herceptin [5]	European public assessment report of Avastin [6]			

Table S2. Detailed information antibody and tracer characteristics

Table S2. Continued. 22

	⁸⁹ Zr-lumretuzumab	⁸⁹ Zr-MMOT0530A	⁸⁹ Zr-bevacizumab	⁸⁹ Zr-trastuzumab			
Information on the ⁸⁹ Zr-labeled antibodies							
Chelator	TFP-N-sucDf	TFP-N-sucDf	TFP-N-sucDf	TFP-N-sucDf			
Chelator:mAb	1.5 ± 0.1	1.5 ± 0.1	1.5 ± 0.1	1.3 ± 0.1			
conjugation ratio							
In vitro serum stability	Stable in serum; < 5%	2% decrease in rcp after	6% decrease rcp after	$0.39 \pm 0.02\%$ decrease in			
	decrease in	168 h in normal saline at	168 h in serum	rcp/day in serum			
	radiochemical purity	20°C					
	(rcp) after 168 h						
Radiochemical purity	> 98	> 98	> 98	> 98			
(%)							
pH	4 - 7	5 - 8	6 - 7	5-8			
Immunoreactivity (%)	Preserved	> 70	> 60	> 70			
Appearance	Colorless to light yellow	Colorless to light yellow	Colorless	Colorless			
		liquid					
Bacterial endotoxins	< 2.5	< 2.5	< 1.0	< 2			
(EU/mL)							
Aggregates (%)	< 5	< 5	< 3	< 5			
Sterility	Sterile	Sterile	Sterile	Sterile			

⁸⁹Zr, Zirconium-89; IgG, Immunoglobuline gamma; HER, Human epidermal growth factor receptor; mAb, monoclonal antibody; rcp, radiochemical purity;
 TFP-N-sucDf, tetrafluorophenol-N-succinyldesferal; VEGF, Vascular endothelial growth factor receptor; Vss, steady state volume of distribution.

- 25 **Table S3.** Details on deposited data and curation process
- 26
- 27 <u>Data deposit</u>
- 28 An overview over the deposited datasets including details on the dataset, contact
- 29 information, information on requesting and depositing data can be found online 30 under www.imagingwarehouse.eu
- 30 under www.imagingwarehouse.eu.
- 31
- 32 Deposited data
- 33 Information on the individual subject and imaging data per individual subject will be
- 34 deposited.
- 35

36 Specification of the deposited data for the four ⁸⁹Zr-mAb tracers analyzed in the 37 current manuscript:

38

39 **Patient related information:**

- Weight, height, total tumor load (PET based, mL), injected [netto] dose, time between tracer injection and start of PET scan, activity on the day of tracer injection.
- 43

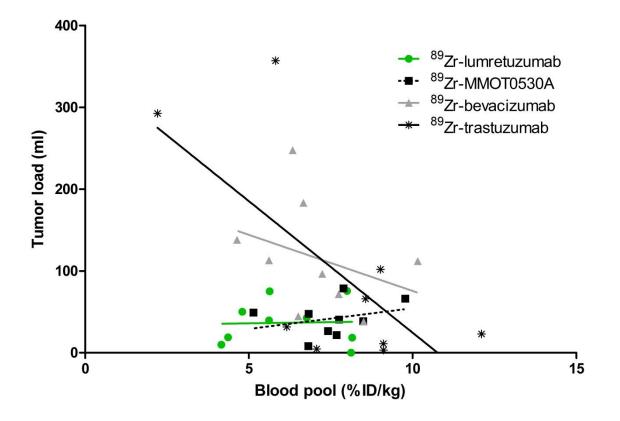
44 **PET imaging data per individual patient:**

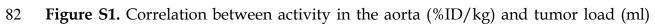
- AMIDE output and SUV calculations for blood and normal organ VOI's: aorta,
 liver, kidney, fat tissue, muscle, brain, lung, spleen, intestine, femur cortex and
 bone marrow.
- 48 AMIDE output per VOI includes median, mean, variance, standard deviation,
 49 minimum, maximum and size (mm³).
- 50 SUV calculations include SUVmean and SUVmax.
- 51

52 Data to be deposited by external parties should include at least above mentioned 53 patient related information and PET related information. Thereby, the administered 54 radiation dose is not restricted to 37 MBq, as the dose can vary. Information on the 55 used analysis tool and/or algorithm should also be deposited. Throughout time, 56 requirements on which data to be deposited might change, therefore, it is further 57 recommended consult the website for instructions to 58 (www.imagingwarehouse.eu).

- 59
- 60
- 61 <u>Data request</u>

All data will be provided upon request. Requests can be send by email to the imaging warehouse group (imagingwarehouse@onco.umcg.nl). Data can be requested by health care professionals and all scientific personnel. Data is provided for research purpose only.


66


67 Re-processing of imaging data with other reconstruction protocols and additional 68 information can be requested. Whether requested data can be provided, will be 69 decided by the for the dataset responsible researcher or delegates (*e.g.* based on 70 privacy laws).

72 **Request format**

- 73 All requests need to contain a specification of the requested data set, information on
- 74 the requesting person or group including name of the responsible investigator,
- 75 function and institution. Furthermore, a short description of the intended 76 aim/research question is preferred.

- 78 <u>Public disclosure and publication policy</u>
- 79 Provenance of the data must be stated and data needs to be referenced to in all
- 80 publications in written form, oral presentation or publication in any other form.

- 83 for ⁸⁹Zr-lumretuzumab (r²=0.00, P=0.93), ⁸⁹Zr-MMOT0530A (r²=0.09, P=0.44), ⁸⁹Zr-
- 84 bevacizumab ($r^2=0.11$, P=0.38) and 89 Zr-trastuzumab ($r^2=0.46$, P=0.05).

85 **References:**

- Makris NE, Boellaard R, Visser EP, et al. Multicenter harmonization of ⁸⁹Zr
 PET/CT performance. J Nucl Med. 2014; 55: 264-267.
- 2. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical
 image analysis. Mol Imaging. 2003; 2: 131-137.
- 3. Meulendijks D, Jacob W, Martinez-Garcia M, et al. First-in-human phase I study of
 lumretuzumab, a glycoengineered humanized anti-HER3 monoclonal antibody in
 patients with metastatic or advanced HER3-positive solid tumors. Clin Cancer
 Res. 2016; 22: 877-885.
- 4. Weekes CD, Lamberts LE, Borad MJ, et al. Phase I study of DMOT4039A, an
 antibody-drug conjugate targeting mesothelin, in patients with unresectable
 pancreatic or platinum-resistant ovarian cancer. Mol Cancer Ther. 2016; 15: 439447.
- 5. European Medicines Agency, European public assessment report of Herceptin.
 Revised 13/12/2017. http://www.ema.europa.eu/ema/index.jsp?curl=pages
 /medicines/human/medicines/000278/human_med_000818.jsp&mid=WC0b01a
 c058001d124
- European Medicines Agency, European public assessment report of Avastin.
 Revised 15/12/2017. http://www.ema.europa.eu/ema/index.jsp?curl=pages
 /medicines/human/medicines/000582/human_med_000663.jsp&mid=WC0b01a
 c058001d124