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Figure S1. MRI examinations obtained at (A) 9.4 T or (B-D) 3 T for the Group A rat displayed in Figure 2A. (A) T2*w 

images from rostral to caudal sections performed at week 7 following a single course of pFUS+MB treatment. Hypointense 

voxels in the anterior left cortex (ellipse) are detected starting from the surface of the brain. Right hippocampal area does not 

show evidence of pathology. (B) T2w images obtained at week 7 following the pFUS+MB treatment. There was no change 

on the T2w images compared to images obtained at week 2. (C) T2*w images at 3 T from rostral to caudal sections 

performed at week 7 following a single pFUS+MB treatment. Hypointense voxels in the anterior left cortex (ellipse) are 

detected starting from the top of the brain. (D) Post GdT1w images show no evidence of BBB opening. L=left, R=right. 

 

 

 



 

Figure S2. MRI examinations obtained at (A) 9.4 T or (B-D) 3 T for the Group B rat displayed in Figure 2B. (A) and (C) 

T2*w images at 9.4 T and 3 T from rostral to caudal sections performed at week 13 following a single course of pFUS+MB 

treatment appear normal. (B) T2w images at 3 T from rostral to caudal sections performed at week 13 following a single 

pFUS+MB treatment appear normal without abnormalities. (D) Post GdT1w images show no evidence of BBB opening. 

L=left, R=right. 

 

 

 

 

 

 

 

 

 

 



 

Figure S3. MRI examinations obtained at (A) 9.4 T or (B-D) 3 T for the Group B rat displayed in Figure 2C. (A) T2*w 

images from rostral to caudal sections performed at week 13 following a single course of pFUS+MB treatment showing 

hypointense voxels in the anterior left cortex (box) and the right hippocampus (arrow). (B) T2w images at 3 T from rostral to 

caudal sections performed at week 13 following a single pFUS+MB treatment appear normal without abnormalities. (C) 

T2*w images displays the presence of hypointense voxels in the left cortex (box) and the right hippocampus (arrow). (D) 

Post GdT1w images show no evidence of BBB opening. L=left, R=right. 

 

 

 

 

 

 

 



 

Figure S4. MRI examinations obtained at (A) 9.4 T or (B-D) 3 T for the Group C rat displayed in Figure 3. (A) T2*w 

images from rostral to caudal sections obtained at week 7 following the 6th pFUS+MB treatment showing hypointense 

voxels (ellipse) in the left cortex and the right hippocampus compared to the contralateral brain. Areas of hypointense voxels 

appear greater on the most rostral images (close to the surface of brain). (B) T2w images at 3 T from rostral to caudal 

sections performed at week 7 following the 6th pFUS+MB treatment. MRI of the left cortex displays thickened meninges 

(arrow), unilateral ventriculomegaly (arrow) and hyperintense area of astrogliosis (arrow). (C) T2*w images display the 

presence of hypointense voxels (ellipse) in the left cortex and the right hippocampus. (D) Post GdT1w images performed 1 

week after last sonication demonstrating persistent BBB disruption (ellipse) in the left cortex starting rostrally in the area of 

astrogliosis. L=left, R=right. 

 

 

 

 

 

 

 

 

 



 

Figure S5. Calculated T2* (ms) histograms derived from T2* maps of all voxels in the sonicated and contralateral brain 

from Group C rats (n=6/group) after 2 pFUS+MB treatments obtained from week 3 3 T MRI scans. There was a significant 

difference in mean T2* values when comparing pFUS+MB treated left cortex (green line) to contralateral cortex (dashed 

green line) (p=0.012) and no significant differences were detected between right and left hippocampus (red line and dashed 

red line). See Table S1 for descriptive statistics of histograms. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S6. The center of the FUS transducer was fitted with a hydrophone (822 kHz) for passive cavitation detection (PCD) 

from each focal point in the left cortex and the right hippocampus. Representative PCD data was collected and processed 

using proprietary software from the manufacturer (FUS Instruments, Toronto, ON) and MATLAB (Mathworks, Inc, Natick, 

MA). (A) Fast Fourier Transform (FFT) magnitude spectra of 1.5f0 ultraharmonic of all the bursts in the first target point in 

the cortex at PNP=0.3 MPa. (B) FFT magnitude spectra at all frequencies of burst 71 represents f0, 1.5f0, 2f0 and 2.5f0. (C) 

FFT magnitude of the entire set of 9 target points at 1.5f0 (blue) and 2.5f0 (red) ultraharmonics with the insert of 1.5f0 (blue) 

and 2.5f0 (red) ratio values. The ratio values were calculated using a baseline for every target point that is the mean FFT 

from the first burst of every point at 1.5f0 and 2.5f0. The ratio was defined as the mean FFT at each burst divided by the base 

mean FFT. Dashed line indicates 3.5x of the baseline FFT magnitude. FFT ratio values at 1.5f0 and 2.5f0 exceeding the 

dashed line would be consistent with excessive cavitation. 

 



 

Figure S7. (A-D) Histological evaluation of a Group B rat brain 13 weeks after a single pFUS+MB treatment. (A) GFAP 

staining revealed little difference, whereas (B) Iba1 staining revealed essentially no difference between pFUS+MB treated 

versus contralateral brain. (C) Elevated numbers of BrdU+ cells in the treated hippocampus were detected consistent with 

increased neurogenesis. (D) CD68+ staining in the Lt cortex and Rt hippocampus would be consistent with the activation of 

innate immune response and infiltration of systemic macrophages. Scale bar=100 μm, insert is 63x magnified view of 

stained cells. DAPI is blue stain. 

 

 

 

 

 



 

Figure S8. (A) Representative WB of sonicated (Lt COR, Rt HIP) and unsonicated (Rt COR, Lt HIP) Group A, B, C and 

sham brain samples. Western blots of protein originating from paraffin embedded tissue were performed in triplicates. (B) 

Densitometry analysis of the WB using Image J software, in which signal intensity of each pTau band (molecular weight: 

75-100 kiliodaltons) was normalized to BA signal intensity, revealed significantly higher pTau/BA ratio in the sonicated 

brain of Group C animals compared to contralateral hemisphere (Figure 8G). The enclosed peaks in each profile plots 

correspond to the dark bands in the original blot. 

 

 

 

 

 

 

 

 



 

Figure S9. Representative PCD with real-time feedback-control [76] was collected during the sonication of age-matched 

rats. The data was processed using proprietary software from the manufacturer (FUS Instruments, Toronto, ON) and 

MATLAB (Mathworks, Inc, Natick, MA). (A) Estimated increasing in situ pressure as a function of burst number: target 

pressure was set to 50% to achieve ultraharmonic emissions. The pressure drop occurres at different values at each target 

point. (B) FFT magnitude spectra at all frequencies of a representative burst represents f0, 1.5f0, 2f0 and 2.5f0. (C) FFT 

magnitude of the entire set of 9 target points at 1.5f0 (blue) and 2.5f0 (red) ultraharmonics with the insert of 1.5f0 (blue) and 

2.5f0 (red) ratio values. The ratio values were calculated using a baseline for every target point that is the mean FFT from the 

first burst of every point at 1.5f0 and 2.5f0. The ratio was defined as the mean FFT at each burst divided by the base mean 

FFT. Dashed line indicates 3.5x of the baseline FFT magnitude. FFT ratio values at 1.5f0 and 2.5f0 exceeding the dashed 

line would be consistent with excessive cavitation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1. Statistical analysis of histograms from Figure 3 and Figure S5 for mean T2* values, skewness and kurtosis. Left 

(Lt) cortex and Right (Rt) hippocampus were treated with pFUS+OptisonTM infusion either once (Group A and B) or by 6 

weekly exposures (Group C). Data is presented as mean+standard deviation and statistical analysis was performed with 

paired t-test. *p=0.012, +p=0.001, !p=0.044, @p=0.009, #p=0.02. 

 

  T2* (ms) Skewness Kurtosis 

 

Group A 

Week 7 

Lt cortex 60.2 (1.2) 0.04 (0.05) -1.17 (0.3) 

Rt cortex 61.1 (1.2) 0.06 (0.02) -1.17 (0.2) 

Rt hippocampus 60.9 (1.0) -0.002 (0.04) -1.47 (0.07) 

Lt hippocampus 60.4 (1.4) 0.002 (0.05) -1.54 (0.04) 

     

 

Group B 

Week 13 

Lt cortex 60.4 (1.2) 0.05 (0.06) -1.35 (0.24) 

Rt cortex 61.6 (2.8) 0.04 (0.08) -1.44 (0.17) 

Rt hippocampus 58.5 (2.6) 0.004 (0.1) -1.5 (0.14) 

Lt hippocampus 59.9 (1.5) 0.06 (0.04) -1.5 (0.73) 

     

 

Group C 

Week 3 

Lt cortex 58.7 (1.5)* 0.07 (0.07) -1.54 (0.15) 

Rt cortex 61.4 (1.2) 0.07 (0.04) -1.48 (0.13) 

Rt hippocampus 59.9 (4.1) 0.05 (0.13) -1.58 (0.10) 

Lt hippocampus 62.5 (3.6) 0.08 (0.03) -1.28 (0.75) 

     

 

Group C 

Week 7 

Lt cortex 50.3 (2.4)+ -0.07 (0.02)@ -1.33 (0.12) 

Rt cortex 60.6 (3.5) 0.03 (0.05) -1.31 (0.24) 

Rt hippocampus 53.3 (1.8)! -0.02 (0.07)# -1.41 (0.14) 

Lt hippocampus 58.4 (3.2) 0.07(0.04) -1.42 (0.15) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2. Summary of reports for pFUS+MB for opening BBB in rats in which pFUS PNP and dose of MB could be 

calculated for a 0.25 kg rat. (C=custom MB, D=Definity®, O=OptisonTM (5-8x108 MB/mL), S=SonoVue® (1.5-5.6x108 

MB/mL)). For OptisonTM and SonoVue®  the mean number of MB/mL was calculated instead of presenting the range of 

#MB per mL. 

FUS Freq 

(MHz) 
PNP (MPa) 

MB  

Type 

Mean  

# MB/mL 
Dose 

Units/kg 

(µL/kg, 

MB/kg) 

#MB Reference 

0.5 0.62 C 
 

4.00E+07 MB/kg 1.00E+07 [112] 

0.551 0.128 D 1.20E+10 20 uL/kg 6.00E+07 [4] 

0.551 0.28 D 1.20E+10 20 uL/kg 6.00E+07 [47] 

3.5 0.55 D 1.20E+10 10 uL/kg 3.00E+07 
[61] 

3.5 0.81 D 1.20E+10 10 uL/kg 3.00E+07 

1 1 C 
 

2.00E+08 MB/kg 5.00E+07 [113] 

0.589 0.3 O 6.50E+08 100 MB 1.63E+07 [2] 

0.69 0.34 O 6.50E+08 200 uL/kg 3.25E+07 
[72] 

0.69 0.54 O 6.50E+08 200 uL/kg 3.25E+07 

0.69 0.68 D 1.20E+10 10 uL/kg 3.00E+07 
[114] 

0.69 0.72 D 1.20E+10 10 uL/kg 3.00E+07 

0.4 0.32 S 3.55E+08 200 uL/kg 1.90E+07 

[115] 
0.4 0.88 S 3.55E+08 200 uL/kg 1.90E+07 

1 0.75 S 3.55E+08 200 uL/kg 1.90E+07 

1 1.46 S 3.55E+08 200 uL/kg 1.90E+07 

1 0.3 D 1.20E+10 200 uL/kg 6.00E+07 [116] 

0.69 0.46 O 6.50E+08 100 ul/kg 1.63E+07 
[117] 

0.69 0.62 O 6.50E+08 100 ul/kg 1.63E+07 

1.06 0.54 O 6.50E+08 30 uL/kg 1.95E+07 [118] 

1 0.6 O 6.50E+08 3.00E+08 MB/kg 7.50E+07 [119] 

1 0.15 C 
 

2.00E+07 MB/kg 5.00E+06 
[120] 

1 0.75 C 
 

2.00E+07 MB/kg 5.00E+06 

1 0.7 C 5.00E+8 2.00E+07 uL/kg 1.25E+08 [121] 

0.4 0.2 S 3.55E+08 100 uL/kg 9.50E+06 

[122] 
0.4 0.35 S 3.55E+08 100 uL/kg 9.50E+06 

0.4 0.5 S 3.55E+08 100 uL/kg 9.50E+06 

0.4 0.8 S 3.55E+08 100 uL/kg 9.50E+06 

0.5 0.36 S 3.55E+08 100 uL/kg 9.50E+06 
[123] 

0.5 0.7 S 3.55E+08 100 uL/kg 9.50E+06 

0.69 0.55 D 1.20E+10 10 uL/kg 3.00E+07 [124] 



 

 

 

 

 

 

 

 

 

0.69 0.81 D 1.20E+10 10 uL/kg 3.00E+07 

1.14 0.4 C 
 

3.50E+08 MB/kg 8.75E+07 
[70] 

1.14 0.6 C 
 

3.50E+08 MB/kg 8.75E+07 

0.4 0.4 S 3.55E+08 2.4 mL/kg 8.52E+05 
[62] 

0.4 0.8 S 3.55E+08 2.4 mL/kg 8.52E+05 

0.48 0.57 S 3.55E+08 10 ul/kg 9.50E+05 [125] 

1.2 0.4 D 1.20E+10 20 uL/kg 6.00E+07 [126] 

1.2 0.6 D 1.20E+10 20 uL/kg 6.00E+07 [127] 

0.558 0.4 D 1.20E+10 20 uL/kg 6.00E+07 [128] 

0.69 0.55 D 1.20E+10 0.01 mL/kg 1.2E+08 
[129] 

0.69 0.81 D 1.20E+10 0.01 uL/kg 1.2E+08 

0.5 0.6 S 3.55E+08 100 uL/kg 8.55E+06 [130] 

0.69 0.69 D 1.20E+10 10 uL/kg 3.00E+07 [131] 

0.558 0.3 D 1.20E+10 20 uL/kg 6.00E+07 [132] 

1.7 1.2 D 1.20E+10 1.5 uL/kg 4.50E+06 
[65] 

1.7 1.2 D 1.20E+10 1.5 uL/kg 4.50E+06 

0.69 0.6 D 1.20E+10 1 uL/kg 3.00E+06 
[133] 

0.69 0.8 D 1.20E+10 1 uL/kg 3.00E+06 

0.551 0.28 D 1.20E+10 20 uL/kg 2.4E+08 [42] 

1 1.27 O 6.50E+08 100 uL/kg 1.63E+07 
[134] 

0.4 0.45 S 3.55E+08 2.5 uL/kg 2.38E+06 

0.4 1.35 S 3.55E+08 3.5 uL/kg 3.33E+06 [19] 

1.5 0.55 S 3.55E+08 0.025 uL/kg 8.88E+06 

[135] 

1.5 0.78 S 3.55E+08 0.025 uL/kg 8.88E+06 

1.5 1.1 S 3.55E+08 0.025 uL/kg 8.88E+06 

1.5 1.9 S 3.55E+08 0.025 uL/kg 8.88E+06 

1.5 2.45 S 3.55E+08 0.025 uL/kg 8.88E+06 

1.5 3.47 S 3.55E+08 0.025 uL/kg 8.88E+06 

1.5 4.9 S 3.55E+08 0.025 uL/kg 8.88E+06 
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