Longitudinal intravital imaging of transplanted mesenchymal stem cells elucidates their functional integration and therapeutic potency in an animal model of interstitial cystitis/bladder pain syndrome

Chae-Min Ryu^{1,2,†}, Hwan Yeul Yu^{1,2,†}, Hye-Yeon Lee^{2,3,†}, Jung-Hyun Shin¹, Seungun Lee^{2,3}, Hyein Ju^{2,3}, Bjorn Paulson^{4,5}, Sanghwa Lee^{5,6}, Sujin Kim^{2,3}, Jisun Lim^{2,3}, Jinbeom Heo^{2,3}, Ki-Sung Hong⁷, Hyung-Min Chung^{7,8}, Jun Ki Kim^{5,6,*}, Dong-Myung Shin^{2,3,*}, Myung-Soo Choo^{1,*}

¹Department of Urology, ²Department of Biomedical Sciences, ³Department of Physiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea, ⁴Department of Physics, Yonsei University, Seoul, Korea, ⁵Biomedical Engineering Research Center, ASAN Institute for Life Sciences, Asan Medical Center, ⁶Department of Convergence Medicine, University of Ulsan, College of Medicine, Seoul, Korea, ⁷Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul, Korea, ⁸Mirae Cell Bio Co. Ltd, Seoul, Korea [†]These authors contributed equally to this work.

Running title: Intravital imaging of M-MSCs for treatment of IC/BPS

***Correspondence:** Myung-Soo Choo, M.D., Ph.D. (<u>mschoo@amc.seoul.kr</u>), Dong-Myung Shin, Ph.D. (<u>d0shin03@amc.seoul.kr</u>), Jun Ki Kim, Ph.D. (<u>kim@amc.seoul.kr</u>)

This Supplementary Material file contains twelve Supplementary Figures, six Supplementary Movies and their legends.

SUPPLEMENTARY FIGURE LEGENDS

Figure S1. Characterization of hESC-derived M-MSCs.

(A) Morphological characterization of M-MSCs (left panel; magnification ×40, scale bar = 400 μ m and right panel; magnification ×100, scale bar = 1,000 μ m). (B) Analysis of surface antigen expression showing that M-MSCs were positive for markers of MSCs (CD44, CD73, and CD105) and pericytes (CD146 and NG2).

Figure S2. Stable expression of GFP in GFP⁺ M-MSCs.

Expression of GFP in M-MSCs infected with a lentivirus containing a GFP-expressing cassette during long-term cultivation and multi-lineage differentiation. (A and B) Expression of GFP during cultivation of GFP⁺ M-MSCs for 5 weeks was monitored using an inverted fluorescence

microscope (A; magnification ×100, scale bar = 100 μ m) and by FACS analysis (B). (B) The percentage of GFP-expressing cells determined by FACS analysis was quantified from three independent experiments. Data are presented as the mean ± SEM. (C) Expression of GFP during adipogenic (upper panel; ×200 magnification; scale bar = 20 μ m), osteogenic (middle panel; ×200 magnification; scale bar = 20 μ m), osteogenic (middle panel; ×200 magnification; scale bar = 20 μ m), osteogenic (middle panel; ×200 magnification; scale bar = 20 μ m) differentiation in control (Naïve) and GFP-expressing M-MSCs (GFP⁺ M-MSCs). Adipogenic, osteogenic, and chondrogenic differentiation was characterized by Oil Red O, Alizarin Red S, and Alcian Blue staining, respectively.

Figure S3. Quantitative assay of intravital micro-endoscopic imaging

Percentage of the fluorescent area in confocal endoscopic micrographs. Representative movies obtained in these experiments are available as **Supplementary Movies**.

Figure S4. Low level of autofluorescence in intravital imaging.

(A) Representative images of GFP in cultured GFP⁺ M-MSCs (magnification ×40 and ×100). (B) Longitudinal imaging of living animals not transplanted with GFP⁺ M-MSCs. Time-lapse images of the bladders of LPS-IC rats were obtained using a front-view GRIN optical probe endoscopically inserted into the bladder (left, magnification ×40) or an objective lens (middle; magnification ×40, right; magnification ×100). Baseline images from rats not injected with GFP⁺ M-MSCs show low autofluorescence, and weak fluorescence signals overall are detected by intravital imaging. Scale bar = 50 μ m.

Figure S5. Apoptosis of transplanted M-MSCs.

(A) Representative images of staining to detect TUNEL⁺ apoptotic cells (red) among transplanted GFP⁺ M-MSCs (green) (magnification ×400, scale bar = 20 μ m) in bladder tissues of LPS-IC + M-MSC rats at the indicated number of DAT. (B) Quantification of the staining results. Data show the percentage of GFP⁺ cells that were TUNEL⁺ (n = 8) and are presented as the mean ± SEM. ***p<0.001 compared with the 3 DAT group according to a one-way ANOVA with the Bonferroni post-hoc test.

Figure S6. Immunostaining of transplanted M-MSCs.

(A) To rule out the possibility of non-specific staining, bladder tissues of LPS-IC + M-MSC rats were co-stained with mouse and rabbit IgG control antibodies, and bladder tissues of LPS-IC rats not injected with M-MSCs (LPS-IC; w/o M-MSC) were co-stained for the indicated markers (green) and GFP (red) (magnification ×1,000, scale bar = 10 μ m) as two sets of negative controls. (B) Representative confocal micrographs of bladder sections of LPS-IC + M-MSC rats stained for GFP (red) and vimentin, α -SMA, or CD31 (green) at 30 DAT (magnification ×1,000, scale bar = 10 μ m). Nuclei were stained with DAPI (blue).

Figure S7. Co-expression of vimentin and human antigens in transplanted M-MSCs.

Representative confocal micrographs of bladder sections of LPS-IC + M-MSC rats stained for hB2M (red) and vimentin at 7 DAT (upper panel) and 30 DAT (lower panel) in blood vessel-like structures (magnification \times 1,000, scale bar = 10 µm). Nuclei were stained with DAPI (blue).

Figure S8. Disappearance of transplanted M-MSCs at 1 month after transplantation.

Representative confocal micrographs of bladder sections of LPS-IC + M-MSC rats stained for GFP (red) and vimentin, E-cadherin (Ecad), or CD31 (green) at 42 DAT (magnification \times 1,000, scale bar = 10 µm). Nuclei were stained with DAPI (blue).

Figure S9. Long-term therapeutic effects of M-MSCs on bladder function in LPS-IC rats.

Representative awake cystometry results at 2 weeks (left) and 4 weeks (right) after injection of 1×10^{6} M-MSCs (LPS-IC + M-MSC) or PBS (LPS-IC) into LPS-IC rats. Sham: sham-operated.

Figure S10. Therapeutic effects of M-MSCs on chronic bladder injury in LPS-IC rats.

(A and B) Representative Toluidine blue staining (A; magnification ×100, scale bar = 100 μ m), and TUNEL (B; magnification ×400, scale bar = 100 μ m) in bladder tissues of LPS-IC rats at 2 and 4 weeks after injection of 1×10⁶ M-MSCs (LPS-IC + M-MSC) or PBS (LPS-IC). Nuclei were stained with Mayer's hematoxylin (A) or DAPI (blue, B). Arrows indicate infiltrated mast cells (A) and apoptotic cells (B). Sham: sham-operated.

Figure S11. Immunofluorescence analysis of WNT signaling and engraftment of M-MSCs.

(A) Representative confocal micrographs of bladder sections from the indicated groups of rats co-stained for GFP (red) and β -catenin (green) (magnification ×1,000, scale bar = 10 μ m). Nuclei were stained with DAPI (blue). (B) Bladder sections of LPS-IC + M-MSC rats were

stained with mouse and rabbit IgG control antibodies as a negative control in experiments assessing the nuclear localization of β -catenin and engraftment of GFP⁺ cells (magnification ×1,000, scale bar = 10 µm). (C) Bladder tissues of LPS-IC rats not injected with GFP⁺ M-MSCs (LPS-IC; w/o M-MSC) were stained as a negative control in experiments assessing the engraftment of GFP⁺ cells (magnification ×200, scale bar = 200 µm). Nuclei were stained with DAPI (blue). U: urothelium; S: serosa; sham: sham-operated.

Figure S12. The therapeutic efficacy of M-MSCs is superior to that of BM-MSCs.

(A and C) Representative awake cystometry at 1 week (A) or 2 or 4 weeks (C) after injection of M-MSCs or BM-MSCs (1×10^5 cells; 100 K) into the bladders of LPS-IC rats. (B and D) The non-voiding contraction (NVC), micturition interval (MI), micturition volume (MV), and bladder capacity (BC) were quantified from the voiding pattern analysis. All data are presented as the mean \pm SEM (five independent animals per group). Data were statistically analyzed using a one-way (B) or two-way (D) ANOVA and the Bonferroni post-hoc test. ***p<0.001 compared with the LPS-IC group; ###p<0.001 for the M-MSC vs. BM-MSC groups.

SUPPLEMENTARY MOVIES AND LEGENDS

Movie S1. Intravital endoscope imaging at 3 DAT (Figure 2)

Movie S2. Intravital endoscope imaging at 30 DAT (Figure 2)

Movie S3. Intravital microscope 3 DAT with 40×magnification (Figure 3A)

Movie S4. Intravital microscope 3 DAT with 100×magnification (Figure 3B)

Movie S5. Intravital microscope 30 DAT with 40×magnification (Figure 3A)

Movie S6. Intravital microscope 30 DAT with 100×magnification (Figure 3B)

Supplementary Movies at other days after transplantation would be available at website.

These videoclips can be also freely downloaded from FTP server (ftp://sdmlab.iptime.org). The login ID and password are is "ID: FTP_Guest and PW: Guest1".