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Construction of radiomic signature using LASSO Cox regression model 

The least absolute shrinkage and selection operator method (LASSO) is a popular 

method for regression of high-dimensional predictors [1-3]. The method uses an L1 

penalty to shrink some regression coefficients to exactly zero. We selected  via 1-SE 

(standard error) criteria, i.e., the optimal  is the largest value for which the partial 

likelihood deviance is within one SE of the smallest value of partial likelihood 

deviance. Thus, we plotted the partial likelihood deviance versus log (), where  is 

the tuning parameter. A value  = 0.1838872 with log () = -1.693433 was chosen by 

cross-validation via the 1-SE criteria. A vertical line was drawn at log () = -1.693433, 

which corresponds to the optimal value  = 0.1838872 (Figure S2). The optimal 

tuning parameter resulted in fifteen non-zero coefficients. Three features, Hist_Var, 

Hist_Entropy, LGRE_GLRLM, with coefficients -0.10385119, -0.00885129, 

-0.01904336, respectively, were selected in the LASSO Cox regression model (Figure 

S2B). Radiomic Score ＝ -0.10385119 × Hist_Var – 0.00885129 × Hist_Entropy – 

0.01904336 × LGRE_GLRLM. Before processing, we made the correlation matrixes 

between all the fetures in the training, validation, and combined cohorts, respectively 

(Figures S23-25). We then used scatterplot matrixes showing the interrelationship 

among the Rad-score, the 3 radiomic features, and the conventional features 

(SUVmax, SUVmean, TLG and MATV) in the training, validation, and combined 

cohorts, respectively (Figures S26-27). 

 

Interobserver reproducibility of feature extraction 



Statistical analysis The interobserver agreement of feature extraction was evaluated 

by using the interclass correlation coefficient (ICC). The strength of agreement was 

evaluated as follows: an ICC value of less than 0.20 indicated poor agreement; 0.21–

0.40, fair agreement; 0.41–0.60, moderate agreement; 0.61–0.80, good agreement; 

and 0.81–1.0, excellent agreement. 

Results There was no statistically significant differences between the measurements 

of the two readers for each selected feature, with P values ranging from 0.61 to 0.89. 

The interobserver ICCs of all metrics calculated on the basis of the reader’s two 

measurements were good to excellent, ranging from 0.74 to 0.97.  
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Figure S1. Study design 

 



 

Figure S2. Texture feature selection using the least absolute shrinkage and selection operator 

(LASSO) Cox regression model. (A) Tuning parameter (λ) selection in the LASSO model used 

10-fold cross-validation via minimum criteria. The partial likelihood deviance (PLD) curve was plotted 

versus log (λ). Dotted vertical lines were drawn at the optimal values by using the minimum criteria 

and 1 standard error of the minimum criteria (the 1-SE criteria). A λ value of 0.1838872, with log (λ) of 

-1.693433 was chosen (1-SE criteria) according to 10-fold cross-validation. (B) LASSO coefficient 

profiles of the 80 texture features. A coefficient profile plot was produced against the log (λ) sequence. 

A vertical line was drawn at the value selected using 10-fold cross-validation, where optimal λ resulted 

in nineteen nonzero coefficients. 

 

 

 

 



 

Figure S3. Representative images in different stage patients.  

RS: Radiomic score. 

 

 

 

Figure S4. X-tile plots of the Rad-score and the points of the Rad-score. Coloration of the plot 

represents the strength of the association at each division ranging from low (dark, black) to high (bright, 

red, or green). Red represents an inverse association between the expression levels and survival of the 

feature, whereas green represents a direct association. 

 

 



 

Figure S5. Time-dependent ROC curves and Kaplan-Meier survival analysis of SUVmax in 

the training and validation cohorts. 

(A) Training cohort. (B) Validation cohort. We used AUCs at 1, 3, and 5 years to assess prognostic 

accuracy in the training and validation cohorts. We calculated P-values using the log-rank test. 

Data are AUC or P-value. ROC: receiver operator characteristic. AUC: area under the curve. HR = 

hazard ratio. SUVmax: maximum standardized uptake value. 

 



 

Figure S6. Time-dependent ROC curves and Kaplan-Meier survival analysis of MATV in the 

training and validation cohorts. 

(A) Training cohort. (B) Validation cohort. We used AUCs at 1, 3, and 5 years to assess prognostic 

accuracy in the training and validation cohorts. We calculated P-values using the log-rank test. 

Data are AUC or P-value. ROC: receiver operator characteristic. AUC: area under the curve. HR = 

hazard ratio. MATV: metabolically active tumor volume. 

 

 



 

Figure S7. Time-dependent ROC curves and Kaplan-Meier survival analysis of TLG in the 

training and validation cohorts. 

(A) Training cohort. (B) Validation cohort. We used AUCs at 1, 3, and 5 years to assess prognostic 

accuracy in the training and validation cohorts. We calculated P-values using the log-rank test. 

Data are AUC or P-value. ROC: receiver operator characteristic. AUC: area under the curve. HR = 

hazard ratio. TLG: total lesion glycolysis. 

 

 

 



 

Figure S8. Time-dependent ROC curves and Kaplan-Meier survival analysis of stage in the 

training and validation cohorts. 

(A) Training cohort. (B) Validation cohort. We used AUCs at 1, 3, and 5 years to assess prognostic 

accuracy in the training and validation cohorts. We calculated P-values using the log-rank test. 

Data are AUC or P-value. ROC = receiver operator characteristic. AUC = area under the curve. 

HR = hazard ratio. 

 



 

Figure S9. Rad-score analysis of 132 GC patients in the training cohort. 

(A): Rad-score distribution; (B): Recurrence status of GC patients; (C): Survival status of GC patients; 

(D): color-gram of the expression profiles of 3 radiomic features in GC patients; rows represent 3 

radiomic features, and columns represent patients. Red dotted lines represent the Rad-score cutoff 

dividing the patients into high- and low-Rad-score groups.  



 

Figure S10. Rad-score analysis of 82 GC patients in the validation cohort. 

(A): Rad-score distribution; (B): Recurrence status of GC patients; (C): Survival status of GC patients; 

(D): color-gram of the expression profiles of 3 radiomic features in GC patients; rows represent 3 

radiomic features, and columns represent patients. Red dotted lines represent the Rad-score cutoff 

dividing the patients into high- and low-Rad-score groups.  

 

 



 

Figure S11. Survival analyses of the 3 selected features associated with disease-free survival and 

overall survival in the 214 patients. 



 

Figure S12. Receiver operating characteristic (ROC) curves of 3-, and 5-year DFS and OS for 

the 3 selected features and Rad-score in the 214 patients. (A), (C), for DFS; (B), (D), for OS. 

DFS, disease-free survival; OS, overall survival. AUC, area under the curves 

 



 

Figure S13. Kaplan-Meier survival analysis of disease-free survival and overall survival 

according to the Rad-score classifier in subgroups of GC patients in combined training and 

validation cohorts. Disease-free survival (left pane) and overall survival (right pane): (A) Stage I+II (n 

= 78). (B) Stage III+IV (n = 136).  

 

 

 

 



 

Figure S14. Use of the constructed clinicopathological nomogram to estimate DFS and OS for GC, 

along with the assessment of the model calibration. (A) Clinicopathological nomogram to estimate DFS 

(left) and OS (right). Locate the patient’s each variable on the variable-score axis. Draw a line straight upward to 

the point axis to determine how many points toward the probability of DFS and OS the patient receives for his or 

her score. Repeat the process for each variable. Sum the points achieved for each of the risk factors. Locate the 

final sum on the Total Point axis. Draw a line straight down to find the patient’s probability of DFS and OS. 

Calibration curves for the nomograms of DFS (left, (B) (D)) and OS (right, (C) (E)) show the calibration of each 

model in terms of the agreement between the estimated and the observed 1-, 3-, and 5-year outcomes. (B) (C), 

Training cohort; (D) (E), validation cohort. Nomogram-estimated DFS or OS is plotted on the x-axis; the observed 

DFS or OS is plotted on the y-axis. Diagonal dotted line = a perfect estimation by an ideal model, in which the 

estimated outcome perfectly corresponds to the actual outcome. Solid line = performance of the nomogram, a 



closer alignment of which with the diagonal dotted line represents a better estimation. 

 

 

Figure S15. Use of the nomograms combining PET conventional metrics (SUVmax/MATV/TLG), 

Rad-score, with clinical features to estimate DFS and OS for GC, along with the assessment of 

the model calibration. (A) Nomograms combining PET conventional metrics (SUVmax/MATV/TLG), 

Rad-score, with clinical features to estimate DFS (left) and OS (right). Locate the patient’s each variable on the 

variable-score axis. Draw a line straight upward to the point axis to determine how many points toward the 

probability of DFS and OS the patient receives for his or her score. Repeat the process for each variable. Sum the 

points achieved for each of the risk factors. Locate the final sum on the Total Point axis. Draw a line straight down 

to find the patient’s probability of DFS and OS. Calibration curves for the nomograms of DFS (left, (B) (D)) and 

OS (right, (C) (E)) show the calibration of each model in terms of the agreement between the estimated and the 



observed 1-, 3-, and 5-year outcomes. (B) (C), Training cohort; (D) (E), validation cohort. Nomogram-estimated 

DFS or OS is plotted on the x-axis; the observed DFS or OS is plotted on the y-axis. Diagonal dotted line = a 

perfect estimation by an ideal model, in which the estimated outcome perfectly corresponds to the actual outcome. 

Solid line = performance of the nomogram, a closer alignment of which with the diagonal dotted line represents a 

better estimation. 

 

 

Figure S16. Use of the nomograms combining PET conventional metrics (SUVmax/MATV/TLG) 

with clinical features to estimate DFS and OS for GC, along with the assessment of the model 

calibration. (A) Nomograms combining PET conventional metrics (SUVmax/MATV/TLG) with clinical 

features to estimate DFS (left) and OS (right). Calibration curves for the nomograms of DFS (left, (B) (D)) and 

OS (right, (C) (E)) show the calibration of each model in terms of the agreement between the estimated and the 



observed 1-, 3-, and 5-year outcomes. (B) (C), Training cohort; (D) (E), validation cohort. 

 

 

Figure S17. Decision curve analysis for each model in the training and validation cohorts. (A) 

(C), training cohort; (B) (D), validation cohort. (A) (B) for DFS; (C) (D) for OS. The y-axis 

measures the net benefit, and the red line represents radiomics nomogram. The blue dotted line 

represents the assumption that all patients have 5-year survival, and the thin black line represents 

the assumption that no patients have 5-year survival. The net benefit was calculated by summing 

the benefits (true positive results) and subtracting the harms (false positive results), weighting the 

latter by a factor related to the relative harm of an undetected cancer compared with the harm of 

unnecessary treatment. The radiomics nomogram had the highest net benefit compared with both 

the other models and simple strategies such as follow-up of all patients (dotted sky-blue line) or no 

patients (horizontal black line) across most range of threshold probabilities at which a patient 

would choose to undergo follow-up. 

 

 



 

Figure S18. Kaplan-Meier analysis of disease-free survival and overall survival in patients received 

postsurgical chemotherapy (CT) according to Rad-score (RS). Left panel: CT patients; right panel: no 

CT patients. (A) training cohort (n = 132), (B) validation cohort (n = 82), (C) combined cohort (n = 

214). P -value was calculated by log-rank test. 

 

 

 



 

Figure S19. Kaplan-Meier survival curves for patients with gastric cancer in different 

SUVmax or MATV subgroups in the 214 patients, which were stratified by the receipt of 

chemotherapy. CT, chemotherapy; RS, radiomic score. 

 

 

Figure S20. Kaplan-Meier survival curves for patients with gastric cancer in different stage 

subgroups in the 214 patients, which were stratified by the receipt of chemotherapy. CT, 

chemotherapy; RS, radiomic score. 



 

Figure S21. Time-dependent ROC curves and Kaplan-Meier survival analysis for patients in 

training and validation cohorts according to the signature based on SUVmax and MATV. 

P-values were calculated by log-rank test. The signature: based on the conventional features only 

(SUVmax + MATV). 



 

Figure S22. Kaplan-Meier survival curves for patients with gastric cancer in the 214 patients  

according to the signature based on SUVmax and MATV, which were stratified by the 

receipt of chemotherapy. CT, chemotherapy; RS, radiomic score. 



 

Figure S23. Correlation matrix between all the features in the training cohort. 



 

Figure S24. Correlation matrix between all the features in the validation cohort. 



 

Figure S25. Correlation matrix between all the features in the combined training and 

validation cohort. 

 



 

Figure S26. Scatterplot matrix of the interrelationship between Rad-score, the 3 radiomic features, and 

the conventional features (SUVmax, SUVmean, TLG and MATV) in the training cohort. RS: Radiomic 

score. 



 

Figure S27. Scatterplot matrix of the interrelationship between Rad-score, the 3 radiomic features, and 

the conventional features (SUVmax, SUVmean, TLG and MATV) in the validation cohort. RS: 

Radiomic score. 

 

 

 

 

 

 

 

 

 



Table S1. The image features extracted. 

Intensity features(14) Shape(9) GLCM(26) GLRLM(13) GLSZM(13) NGTDM(5) 

SUV_max MATV Energy_GLCM SRE_GLRLM SZE_GLSZM Coarseness_NGTDM 

SUV_mean Surface Entropy_GLCM LRE_GLRLM LZE_GLSZM Complexity_NGTDM 

SUV_min Compactness1 DiffEntropy_GLCM GLN_GLRLM GLN_GLSZM Contrast_NGTDM 

SUV_median Compactness2 SumEntropy_GLCM RLN_GLRLM ZSN_GLSZM Strength_NGTDM 

SUV_range Sphericity Variance_GLCM RP_GLRLM ZP_GLSZM Busyness_NGTDM 

SUV_MAD Avratio SumSquVar_GLCM LGRE_GLRLM LGZE_GLSZM 
 

SUV_SD Irregularity SumVar_GLCM HGRE_GLRLM HGZE_GLSZM 
 

SUV_RMS Eccentricity MaxPossibility_GLCM SRLGE_GLRLM SZLGE_GLSZM 
 

Hist_mean Solidity Contrast_GLCM SRHGE_GLRLM SZHGE_GLSZM 
 

Hist_Var 
 

Dissimilarity_GLCM LRLGE_GLRLM LZLGE_GLSZM 
 

Hist_Skewness 
 

Homogeneity_GLCM LRHGE_GLRLM LZHGE_GLSZM 
 

Hist_Kurtosis 
 

InDiffMoment_GLCM GLV_GLRLM GLV_GLSZM 
 

Hist_Energy 
 

Correlation_GLCM RLV_GLRLM ZSV_GLSZM 
 

Hist_Entropy 
 

DiffVar_GLCM 
   

  
AutoCorrelation_GLCM 

   

  
ClusterPro_GLCM 

   

  
ClusterShade_GLCM 

   

  
ClusterTen_GLCM 

   

  
IMC1_GLCM 

   

  
IMC2_GLCM 

   

  
InVar_GLCM 

   

  
IDMN_GLCM 

   

  
IDN_GLCM 

   

  
SumAverage1_GLCM 

   

  
SumAverage2_GLCM 

   

  
Agreement_GLCM 

   

GLCM, gray-level co-occurrence matrices; GLRLM, gray-level run length matrix; GLSZM, gray-level 

size zone matrix; NGTDM, neighborhood gray-tone difference matrix wavelet decompositions; MATV, 

metabolically active tumor volume. 

 

 

 

 

 

 

 



Table S2. Clinical characteristics of patients according to the Rad-score in the combined training 

and validation cohorts. 

Variables 
Combined cohort (n = 214) 

N low-RS (%) high-RS (%) p-value 

Gender 
   

0.738 

  Male 149 93(62.4%) 56(37.6%) 
 

  Female 65 39(60.0%) 26(40.0%) 
 

Age(years) 
   

0.412 

  ＜60 112 72(64.3%) 40(35.7%) 
 

  ≧60 102 60(58.8%) 42(41.2%) 
 

Tumor size(cm) 
   

0.006 

  ＜4 74 55(74.3%) 19(25.7%) 
 

  ≧4 140 77(55.0%) 63(45.0%) 
 

Tumor location 
   

0.002 

  Upper 76 43(56.6%) 33(43.4%) 
 

  Middle 34 24(70.6%) 10(29.4%) 
 

  Lower 75 55(73.3%) 20(26.7%) 
 

  Whole 29 10(34.5%) 19(65.5%) 
 

Differentiation status 
   

0.699 

  Well  35 23(65.7%) 12(34.3%) 
 

  Moderate 35 23(65.7%) 12(34.3%) 
 

  Poor and undifferentiated 144 86(59.7%) 58(40.3%) 
 

Lauren type  
   

0.502 

  Intestinal type 93 55(59.1%) 38(40.9%) 
 

  Diffuse or mixed type  121 77(63.6%) 44(36.4%) 
 

CEA 
   

0.546 

  Elevated 35 20(57.1%) 15(42.9%) 
 

  Nomal 179 112(62.6%) 67(37.4%) 
 

CA199 
   

0.895 

  Elevated 48 30(62.5%) 18(37.5%) 
 

  Normal 166 102(61.4%) 64(38.6%) 
 

Depth of invasion 
   

0.032 

  T1  37 28(75.7%) 9(24.3%) 
 

  T2 14 10(71.4%) 4(28.6%) 
 

  T3  15 12(80.0%) 3(20.0%) 
 

  T4a 120 70(58.3%) 50(41.7%) 
 

  T4b 28 12(42.9%) 16(57.1%) 
 

Lymph node metastasis 
   

0.079 

  N0 72 50(69.4%) 22(30.6%) 
 

  N1 25 19(76.0%) 6(24.0%) 
 

  N2 35 20(57.1%) 15(42.9%) 
 

  N3a 57 32(56.1%) 25(43.9%) 
 

  N3b 25 11(44.0%) 14(56.0%) 
 

Distant metastasis 
   

0.148 



  M0 191 121(63.4%) 70(36.6%) 
 

  M1 23 11(47.8%) 12(52.2%) 
 

TNM stage 
   

0.116 

  I 41 31(75.6%) 10(24.4%) 
 

  II 37 24(64.9%) 13(35.1%) 
 

  III 113 66(58.4%) 47(41.6%) 
 

  IV 23 11(47.8%) 12(52.2%) 
 

Chemotherapy 
   

0.062 

  No 95 52(54.7%) 43(45.3%) 
 

  Yes 119 80(67.2%) 39(32.8%) 
 

SUVmax    0.574 

  Low 107 64(59.8%) 43(40.2%)  

  High 107 68(63.6%) 39(36.4%)  

SUVmean    0.011 

  Low 107 57(53.3%) 50(46.7%)  

  High 107 75(70.1%) 32(29.9%)  

TLG    0.574 

  Low 107 64(59.8%) 43(40.2%)  

  High 107 68(63.6%) 39(36.4%)  

MATV    0.024 

  Low 107 74(69.2%) 33(30.8%)  

  High 107 58(54.2%) 49(45.8%)  

RS, Rad-score. The conventional features (SUVmax, SUVmean, TLG and MATV) were separated by 

median value. SUVmax: maximum standardized uptake value. MATV: metabolically active tumor 

volume. TLG: total lesion glycolysis. 

 

 

 

 

 

 

 

 

 

 



Table S3. Univariate association of Rad-score, PET conventional metrics, clinicopathological characteristics with 

disease-free and overall survival in the training and validation cohorts. 

Variables 
Training cohort 

 

Validation cohort 

 

Total cohort 

HR (95%CI) p   HR (95%CI) p   HR (95%CI) p 

Disease-free survival 

       Rad-score 3.354 (2.177-5.167) <0.0001 

 

4.453 (2.498-7.936) <0.0001 

 

3.758 (2.659-5.312) <0.0001 

Age(years) (≥60 vs. <60) 1.362(0.889-2.087) 0.156 

 

1.255 (0.714-2.209) 0.43 

 

1.346 (0.958-1.889) 0.086 

Gender (male vs. female) 0.729 (0.470-1.130) 0.157 

 

1.156 (0.591-2.264) 0.672 

 

0.847 (0.590-1.217) 0.369 

Tumor size(>4 cm vs. ≤4 cm) 1.885 (1.182-3.007) 0.008 

 

2.495 (1.272-4.894) 0.008 

 

2.068 (1.410-3.032) <0.0001 

Tumor location 1.119(0.902-1.388) 0.305 

 

1.201(0.913-1.578) 0.191 

 

1.155 (0.976-1.367) 0.094 

Differentiation 1.446 (1.039-2.014) 0.029 

 

1.385 (0.959-2.000) 0.083 

 

1.422 (1.114-1.816) 0.005 

Lauren type 1.058 (0.692-1.617) 0.795 

 

1.107 (0.626-1.959) 0.727 

 

1.063(0.757-1.493) 0.724 

CEA(ng/ml) 1.205 (0.651-2.231) 0.552 

 

3.529 (1.886-6.606) <0.0001 

 

1.868 (1.219-2.864) 0.004 

CA199(U/ml) 2.274 (1.379-3.752) 0.001 

 

3.254 (1.818-5.823) <0.0001 

 

2.602 (1.793-3.776) <0.0001 

Depth of invasion  1.627 (1.369-1.934) <0.0001 

 

2.121 (1.489-3.021) <0.0001 

 

1.740 (1.485-2.038) <0.0001 

Lymph node metastasis 1.466 (1.261-1.704) <0.0001 

 

1.805 (1.440-2.262) <0.0001 

 

1.579 (1.392-1.789) <0.0001 

Distant metastasis 6.579 (3.675-11.776) <0.0001 

 

2.726 (1.150-6.465) 0.023 

 

4.596 (2.869-7.361) <0.0001 

Stage 1.474(1.246-1.743) <0.0001 

 

2.127 (1.560-2.902) <0.0001 

 

1.651 (1.427-1.911) <0.0001 

Chemotherapy 0.843 (0.550-1.291) 0.431 

 

0.590 (0.336-1.034) 0.065 

 

0.733 (0.522-1.029) 0.073 

SUVmax(low vs. high) 1.377 (0.897-2.113) 0.143 
 

1.484 (0.844-2.609) 0.171 
 

1.438 (1.024-2.020) 0.036 

SUVmean(low vs. high) 0.800 (0.524-1.221) 0.3 
 

1.350 (0.764-2.384) 0.302 
 

1.000 (0.713-1.403) 0.999 

TLG(low vs. high) 0.981 (0.642-1.499) 0.93 
 

1.321 (0.750-2.326) 0.335 
 

1.129 (0.805-1.583) 0.483 

MATV(low vs. high) 1.284 (0.837-1.969) 0.252 
 

0.1.652 (0.939-2.906) 0.082 
 

1.451 (1.032-2.040) 0.032 

Overall survival 

        Rad-score 3.303 (2.067-5.276) <0.0001 

 

4.357 (2.413-7.867) <0.0001 

 

3.724 (2.578-5.379) <0.0001 

Age(years) (≥60 vs. <60)  1.408(0.888-2.233) 0.145 

 

1.414 (0.796-2.511) 0.238 

 

1.425 (0.996-2.039) 0.053 

Gender (male vs. female) 0.747 (0.466-1.197) 0.226 

 

1.252 (0.622-2.518) 0.529 

 

0.872 (0.594-1.280) 0.484 

Tumor size(>4 cm vs. ≤4 cm) 2.169 (1.285-3.660) 0.004 

 

2.231 (1.133-4.392) 0.02 

 

2.171 (1.436-3.284) <0.0001 

Tumor location 1.147(0.910-1.445) 0.246 

 

1.282 (0.968-1.699) 0.084 

 

1.203 (1.007-1.437) 0.042 

Differentiation 1.852(1.244-2.757) 0.002 

 

1.366(0.940-1.984) 0.102 

 

1.583 (1.206-2.077) 0.001 

Lauren type 1.147 (0.726-1.815) 0.557 

 

1.137 (0.634-2.037) 0.667 

 

1.135 (0.792-1.626) 0.49 

CEA(ng/ml) 1.025 (0.508-2.069) 0.944 

 

2.858 (1.518-5.381) 0.001 

 

1.674 (1.059-2.646) 0.027 

CA199(U/ml) 2.342 (1.378-3.981) 0.002 

 

2.836 (1.577-5.097) <0.0001 

 

2.529 (1.718-3.723) <0.0001 

Depth of invasion  1.702(1.388-2.086) <0.0001 

 

2.109 (1.455-3.057) <0.0001 

 

1.810 (1.510-2.170) <0.0001 

Lymph node metastasis 1.532 (1.298-1.808) <0.0001 

 

1.697 (1.356-2.123) <0.0001 

 

1.590 (1.392-1.816) <0.0001 

Distant metastasis 5.160 (2.864-9.297) <0.0001 

 

1.766 (0.694-4.491) 0.232 

 

3.529 (2.165-5.751) <0.0001 

Stage 1.555 (1.285-1.881) <0.0001 

 

2.034 (1.491-2.774) <0.0001 

 

1.704 (1.451-2.002) <0.0001 

Chemotherapy 0.817 (0.516-1.294) 0.388 
 

0.549 (0.310-0.974) 0.04 
 

0.693 (0.485-0.991) 0.045 

SUVmax(low vs. high) 1.561 (0.978-2.492) 0.062 

 

1.634 (0.919-2.906) 0.095 
 

1.607 (1.120-2.304) 0.01 

SUVmean(low vs. high) 0.958 (0.606-1.514) 0.854 

 

1.478 (0.829-2.635) 0.186 
 

1.146 (0.801-1.638) 0.455 

TLG(low vs. high) 1.164 (0.736-1.840) 0.516 

 

1.331 (0.747-2.373) 0.332 
 

1.239 (0.867-1.772) 0.24 

MATV(low vs. high) 1.368 (0.859-2.177) 0.187   1.484 (0.836-2.637) 0.178   1.418 (0.989-2.033) 0.058 

 



Table S4. Performance of models. 

Model 
DFS 

 
OS 

C-Index (95% CI) IBS AIC 
 

C-Index (95% CI) IBS AIC 

Training cohort 
 

 
   

 
 

SUVmax 0.543 (0.479-0.607) 0.201 750.46  0.545 (0.475-0.614) 0.184 647.20 

MATV 0.548 (0.479-0.617) 0.204 748.20  0.557(0.483-0.632) 0.184 644.12 

  Radiomic signature 0.672(0.613-0.731) 0.187 722.97 
 

0.657 (0.592-0.722) 0.170 621.09 

  TNM stage 0.717 (0.668-0.765) 0.169 704.44 
 

0.710 (0.659-0.761) 0.144 605.59 

  Radiomics nomogram 0.800(0.755-0.844) 0.132 665.15 
 

0.786(0.735-0.838) 0.117 576.61 

  Clinicopathologic nomogram 0.762(0.712-0.812) 0.152 686.87 
 

0.761(0.705-0.818) 0.128 593.37 

Validation cohort 
 

 
   

 
 

SUVmax 0.546 (0.467-0.626) 0.207 386.42  0.547 (0.465-0.630) 0.181 368.85 

MATV 0.586 (0.496-0.676) 0.202 386.76  0.573 (0.480-0.667) 0.179 371.43 

  Radiomic signature 0.700 (0.617-0.782) 0.168 364.38 
 

0.702 (0.620-0.784) 0.152 348.48 

  TNM stage 0.727(0.659-0.761) 0.161 356.51 
 

0.704 (0.643-0.766) 0.146 348.80 

  Radiomics nomogram 0.794(0.732-0.856) 0.126 337.78 
 

0.789(0.723-0.854) 0.119 323.57 

  Clinicopathologic nomogram 0.762(0.697-0.828) 0.151 355.38 
 

0.756(0.689-0.822) 0.137 344.00 

IBS, integrated Brier score; AIC, the Akaike information criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Definition of image features 

 Intensity features-15 

Let P  define the first-order histogram of tumor volume. ( )P i  represents the number of voxels 

with SUV values of i , and gN  represents the number of gray-level bins set for P . The 
thi  

entry of the normalized histogram is then defined as: 

1

( )
( )

( )
gN

i

P i
p i

P i






 

1. SUV_max: the maximum SUV value. 

2. SUV_mean: the mean SUV value. 

3. SUV_min: the minimum SUV value. 

4. SUV_median: the median SUV value. 

5. SUV_range: then range of SUV value. 

6. SUV_MAD: Mean absolute deviation, the mean of the absolute deviations of all voxel SUVs 

around the mean SUV value. 

7. SUV_SD: the standard deviation of all SUV values. 

8. SUV_RMS: root mean square, the quadratic mean, or the square root of the mean of squares 

of all voxel SUVs. 

2

1

gN

i

g

i

RMS
N




 

9. Hist_mean: 

1

( )
Ng

i

ip i


  

10. Hist_Var: 

2 2

1

( ) ( )
gN

i

i p i 


   

11. Hist_Skewness: 

3 3

1

( ) ( )
gN

i

s i p i 



   

12. Hist_Kurtosis: 

4 4

1

( ) ( ) 3
gN

i

k i p i 



    



13. Hist_Energy: 

_
gN

i

energy hist p i 2

=1

= ()  

14. Hist_Entropy: 

2

1

_ ( ) log [ ( )]
Ng

i

entropy hist p i p i


   

15. TLG: total lesion glycolysis, defined as the product of MATV and SUVmean. 

 

 Shape features-9 

Shape features, describing the shape and size of the volume of interest. Let M  as the number 

of voxels in the tumor. 

16. MATV: metabolically active tumor volume (V) 

   MATV M size voxel volume 

 17. Surface: the surface area of the volume of interest (A). 

18. Compactness 1: 

2

3

V
1

A

compactness



  

19. Compactness 2: 

2

3
2 36

A

V
compactness 

 

20. Sphericity： 

 
1 2
3 36

A

V
sphericity




 

21. SVratio: the surface area divided by the volume. 

22. Irregularity: 

2

33 4 ( )
4

A
irregularity

V








 

23. Eccentricity: find an ellipsoid that best fits the tumor region, and the eccentricity is then 

given by 

1

2
2

(1 )
b

a
c

  , where c  is the longest semi-principal axes of the ellipsoid, a  

and b  are the second and third longest semi-principal axes of the ellipsoid. 

24. Solidity: ratio of the number of voxels in the tumor region to the number of voxels in the 3D 

convex hull of the tumor region (smallest polyhedron containing the tumor region). 



 

 Gray Level Co-occurrence Matrix-based features (GLCM)-26 

Gray level co-occurrence matrix-based features, as described by study
 
[1]. The element 

( , )P i j  of normalized co-occurrence matrix represent the number of times that intensity  and 

 appeared in two voxels separated by distance D in direction . The co-occurrence matrix is 

given by: 

 ( , ) # ( ( , , ) , ( , , ) ) ,P i j I x y z i I k l m j  | D     

where # represents the number of times, I  represents the voxel intensity, ( , , )x y z  and 

( , , )k l m  are the coordinates (positions) of two different voxels, the direction vector is thus 

determined by ( , , ) ( , , )k l m x y z , gN  is the number of discrete intensity levels in the image, 

and   is the mean of ( , )P i j . The feature is derived by considering all the 13 directions 

simultaneously, thus arriving at a single matrix.  

Let us define: 

1 1

( )
gN Ng

x

i j

= i P i, j
 

    

1 1

( )
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 

   

gN
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i 1 1
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Ng
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i P i, j 
 

    
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y

1 1
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 

   

   
1

,
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x

j

p i P i j



  

   
1

,
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i

p j P i j

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   
1 1

, , , 2,3, 2
g gN N

x y g

i j

p k P i j i j k k N

 
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   
1 1
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g gN N

x y g

i j

p k P i j i j k k N

 
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      2

1 1

1 , log
g gN N

x y

i j

HXY P i j p i p j
 
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1 1
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H p i j p i j
 

   

The various radiomics features based on the co-occurrence matrix are then defined as: 

1. Energy, called Uniformity in [2], also called Angular second moment in [3]: 

 
2

1 1

,
g gN N

i j

energy P i j
 

     

2. Entropy: 

   2

1 1

, log ,
g gN N

i j

entropy P i j P i j
 

      

3. Difference entropy (DiffEntropy): 

   
1

2

0

log
gN

x y x y

k

difference entropy P k P k



 



      

4. Sum entropy (SumEntropy): 

   
2

2

2

log
gN

x y x y

k

sum entropy P k P k 


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5. Variance: 

2 2

1 1

1
[( ) ( ) ] ( , )

 

   



g gN N

x y

i jg g

variance i j p i j
N N

   

6. Sum of squares variance (SumSquVar): 

   
2

1 1

,s    
 

 
g gN N

i j

um of squares variance i P i j  

7. Sum variance (SumVar): 

   
2

2

2

gN

x y

k

sum variance k SA P k



   

where SA is Sum average2. 

8. Maximum probability (MaxPossilility): 

  max ,maximum probability P i j  

9. Contrast: 

 
2

1 1

,
g gN N

i j

contrast i j P i j
 

   

10. Dissimilarity: 



 
1 1

,
g gN N

i j

dissimilarity i j P i j
 

   

11. Homogeneity, also called Inverse difference in [2]: 

 

1 1

,

1 


 


g gN N

i j

P i j
homogeneity

i j
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12. Inverse Different Moment (InDiffMoment), also called local homogeneity in [4]: 

 
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,
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13. Correlation:  
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14. Difference Variance (DiffVar): 
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difference variance k P k
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15. Auto correlation (AutoCorrelation): 

 
1 1

,
g gN N

i j

auto correlation ijp i j
 

  

16. Cluster prominence (ClusterPro): 

 
4

1 1

,
g gN N

x y

i j

cluster prominence i j P i j 
 
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17. Cluster shade (ClusterShade): 

 
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1 1

,
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x y

i j

cluster shade i j P i j 
 
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18. Cluster tendency (ClusterTen): 

 
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1 1

,
g gN N

x y

i j

cluster tendency i j P i j 
 
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19. Informational measure of correlation 1 (IMC1): 

 
1

1
max ,

H HXY
IMC

HX HY


  

Where HX and HY are the entropies of ( )xp i  and ( )yp j .  

20. Informational measure of correlation 2 (IMC2): 

 2 2
2 1

HXY H
IMC e

 
   



where H is the entropy of ( , )p i j . 

21. Inverse variance (InVar): 

 
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1 1

,
,

g gN N

i j
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inverse variance i j
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 
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22. Inverse Difference Moment Normalized (IDMN): 
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23. Inverse Difference Normalized (IDN): 
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24. Sum average1: 
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25. Sum average2: 
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26. Agreement: 
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 Gray Level Run Length Matrix-based features (GLRLM)-13 

Gray level run length matrix-based features are described by Galloway et al. [5].
 
The element of 

GLRLM ( , )P i j  counts the number of runs j  with collinearly adjacent pixels having the same 

gray level intensity i  as follows: 

 1 2( , ) , ,..., jP i j j | I i I i I i     

where 1 2, ,..., jI I I  are collinearly adjacent voxels. 

The GLRLM feature value was derived by considering all the 13 directions simultaneously, thus 

arriving at a single matrix. Let ( , )P i j  be the ( , ) i j th  entry in the given run-length matrix, 



gN  the number of discrete intensity values in the image, rN  the number of different run 

lengths, pN  the number of voxels in the image, and the entry ( , )i j  of the normalized 

GLRLM defined as: 
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Then the GLRLM-based features are defined as: 

1. Short Run Emphasis (SRE): 

 
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,
g rN N

i j

p i j
SRE
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2. Long Run Emphasis (LRE): 
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3. Gray Level Non-Uniformity (GLN): 
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4. Run Length Non-Uniformity (RLN): 
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5. Run Percentage (RP): 
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6. Low Gray Level Run Emphasis (LGRE): 
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7. High Gray Level Run Emphasis (HGRE): 
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   

8. Short Run Low Gray Level Emphasis (SRLGE): 
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9. Short Run High Gray Level Emphasis (SRHGE): 
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10. Long Run Low Gray Level Emphasis (LRLGE): 
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11. Long Run High Gray Level Emphasis (LRHGE): 

  2 2
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 12. Gray Level Variance (GLV) 
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13. Run length Variance (RLV) 
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 Gray Level Size Zone Matrix-based features (GLSZM)-13 

Gray-level size-zone matrix-based features, was described in [1]. GLSZM describes the number of a 

certain size zone j  having same intensity i  within N-connected neighbors in a 3D space as follows:  

 1 2( , ) , ,..., jP i j j | I i I i I i     

where voxels 1 2, ,..., jI I I  are within N-connected neighbors (N=26). 

Let ( , )P i j  be the ( , )i j th  entry in the given size-zone matrix, gN  the number of discrete 

intensity values in the image, zN  the size of the largest homogeneous region in the volume of 

interest, and N  the number homogeneous zones in the image. The entry ( , )i j  of the GLSZM are 

then normalized as:  
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The GLSZM-based features are then defined as: 

1. Small Zone Emphasis (SZE): 
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2. Large Zone Emphasis (LZE): 
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3. Gray Level Non-uniformity (GLN) also called Intensity Variability (IV) in [6]: 
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4. Zone Size Non-uniformity (ZSN) also called Size Zone Variability (SZV) in [6]: 
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5. Zone Percentage (ZP): 

 

1 1

,g z
N N

i j

p i j
ZP

N 

  

6. Low Gray Level Zone Emphasis (LGZE) also called Low Intensity Emphasis (LIE) in [6]: 
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7. High Gray level Zone Emphasis (HGZE) also called High Intensity Emphasis (HIE) in
 
[6]: 

 2

1 1
,

g zN N

i j
HGZE i p i j

 
 

 8. Small Zone Low Gray Level Emphasis (SZLGE) also called Low Intensity Small Area 

Emphasis (LISAE) in
 
[6]: 
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9. Small Zone High Gray-Level Emphasis (SZHGE) also called High Intensity Small Area 

Emphasis (HISAE) in
 
[6]: 
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10. Large Zone Low Gray-Level Emphasis (LZLGE) also called Low Intensity Large Area 

Emphasis (LILAE) in [6]: 
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11. Large Zone High Gray-Level Emphasis (LZHGE) also called High Intensity Large Area 

Emphasis (HILAE) in [6]: 
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12. Gray Level Variance (GLV) 
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13. Zone Size Variance (ZSV) 
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where zone aforesaid also called area in [6]. 

 

 Neighborhood Gray Tone Difference Matrix–based features (NGTDM)-5 

  NGTDM is a column matrix [7]. Denote the
thi entry of the NGTDM as ( )P i , defined as: 



    >0,
( )

0               .

i

i i

i N

i A if N
P i

otherwise



 


 




 

where { }iN  is the set of all voxels with gray-level i  in tumor volume (including the peripheral 

region), iN  is the number of voxels with gray-level i  in tumor volume, and iA  is the average 

gray level of the M  connected neighbors around a center voxel ( , , )V i j k  with gray level i . 

Also, we have 

1
( , , ) ( , , ), ( , , ) (0,0,0)

  

       
d d d

i
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A A j k l V j m k n l s m n l
M

 

where 1d  , specifies the window size as 3 3 3  , and 
3(2 1) 1  M d . The quantity 

i
i

N
n

N
  is also defined, where N  is the total number of voxels in tumor volume. The 

NGTDM-based features are then defined as: 

1. Coarseness: 

1

1

[ ( )]
gN

i

i

coarseness n P i 



   

where   is a small number to prevent coarseness becoming infinite, Ng the number of discrete 

intensity values in the image. 

2. Contrast: 
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3. Busyness: 
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4. Complexity: 
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5. Strength: 
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where   is a small number to prevent strength becoming infinite. 
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