Supplementary Material

Synechococcus elongatus PCC7942 secretes extracellular vesicles to accelerate cutaneous wound healing by promoting angiogenesis

Hao Yin^{1,2*}, Chun-Yuan Chen^{1,2*}, Yi-Wei Liu^{2,3*}, Yi-Juan Tan², Zhi-Li Deng^{4,7}, Fei Yang⁶, Fei-Yu Huang⁶, Cong Wen⁶, Shan-Shan Rao^{2,8}, Ming-Jie Luo^{2,8}, Xiong-Ke Hu², Zheng-Zhao Liu²⁻⁴, Zhen-Xing Wang², Jia Cao², Hao-Ming Liu², Jiang-Hua Liu^{1,2}, Tao Yue^{1,2}, Si-Yuan Tang⁸, Hui Xie^{1-5#}

- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- Hunan Key Laboratory of Organ Injury, Aging and Regenerative Medicine, Changsha, Hunan 410008, China.
- 5. Hunan Key Laboratory of Bone Joint Degeneration and Injury, Changsha, Hunan 410008, China.
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan 410078, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
- 8. Xiangya Nursing School, Central South University, Changsha, Hunan 410013, China

^{*}These authors contributed equally to this work.

[#]Corresponding author: <u>huixie@csu.edu.cn</u>; #87 Xiangya road, Changsha, Hunan 410008, China.

Figure S1. Effects of *S. elongatus* PCC 7942 on functional properties of keratinocytes and fibroblasts. (A) CCK-8 analysis of proliferation of human keratinocyte cell line HaCaT and human skin fibroblasts (HSFs). n = 4 per group. (B-C) Representative images of wound healing assay in HaCaT (B) and quantitative analysis of the migration rates (C). Scale bar: 200 µm. n = 3 per group. (D-E) Representative images of transwell migration assay in HSFs (D) and quantitative analysis of the migrated cells (E). Scale bar: 100 µm. n = 3 per group. Data are plotted as mean \pm SD. **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Figure S2. Effects of *S. elongatus*-EVs on functional properties of human keratinocytes and fibroblasts. (A) CCK-8 analysis of proliferation of keratinocyte cell line HaCaT and HSFs. n = 4 per group. (B-C) Representative images (B) and quantification (C) of wound healing assay for HaCaT. Scale bar: 200 µm. n = 3 per group. (D-E) Representative images (D) and quantification (E) of wound healing assay for HSFs. Scale bar: 200 µm. n = 3 per group. Data are plotted as mean \pm SD. **P* < 0.05, ***P* < 0.01, ****P* < 0.001.

Figure S3. Effects of *S. elongatus* PCC 7942 and *S. elongatus*-EVs on functional properties of mouse epidermal cells and fibroblasts. (A) CCK-8 analysis of proliferation of mouse epidermal JB6 cells and NIH3T3 fibroblasts. n = 4 per group. (B-C) Representative images (B) and quantification (C) of wound healing assay for JB6 cells. Scale bar: 200 µm. n = 3 per group. (D-E) Representative images (D) and quantification (E) of wound healing assay for NIH3T3 fibroblasts. Scale bar: 200 µm. n = 3 per group. Data are plotted as mean \pm SD. *P < 0.05, **P < 0.01, ***P < 0.001.

Figure S4. Effects of *S. elongatus* PCC 7942 and *S. elongatus*-EVs on morphology and growth of endothelial cells. (A) Morphology of HMECs under optical microscopy. Scale bar: 100 μ m. (B) CCK-8 analysis of HMECs' viability. n = 4 per group. Data are plotted as mean \pm SD. ^{*}*P* < 0.05, ^{**}*P* < 0.01, ^{***}*P* < 0.001.