HIF-1a/Wnt signaling-dependent control of gene transcription regulates

differentiation of glioblastoma stem cells.

Daniele Boso et al.

SUPPLEMENTARY INFORMATION
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Figure S1. Wnt signaling activation differentially affects the phenotype of GBM cells
depending on microenvironmental oxygen. (A) Representative immunofluorescence images of
H/N GBM cells (HuTuP53) £Wnt3a (30ng/ml for 4d) stained with Nestin (green) and BIII-tubulin
(red) antibodies and counterstained with Dapi (blue). Original magnification 20x. (B, C)
Representative pictures (B; HuTuP13) and relative quantification (C) of H/N GBM cell
neurospheres (n=5) +Wnt3a (30ng/ml for 4d). (D) Representative Western Blot analysis of TCF4 in
H/N GBM cells (HuTuP82) in which total protein lysates have been immunoprecipitated for -
catenin. Molecular weights in kDa are reported near WB panels. IP: immunoprecipitation. **p<0.01
by one-way ANOVA. d: days; H: hypoxia; IP: immunoprecipitation; N: normoxia; WB: western

blot.
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Figure S2. TCF1 and TCF4 bind to specific genomic regions and regulate peculiar gene
transcription. (A) Heatmap showing the genomic binding within 250bp of peaks selected by
pooling the 50 peaks with the highest fold-enrichments and the 50 peaks with the lowest p-values
for each of the immunoprecipitated transcription factors (TF) in HuTuP47 cells for a total of 289
unique peaks. (B) Peak distribution annotation in relation to gene centered regions (bottom panel).
(C) Logos of the motifs identified in genomic sequences recognized by HIF-1a, TCF1 and TCF4.
(D) Scatter plots representing the peak localization around gene TSS of TCF1 and TCF4 under H
(green); areas showing higher concentration of peaks are evidenced by contour lines. (E) GO
analysis of genes bound by TCF1 and TCF4 in H. FDR: false discovery rate; GO: gene ontology; H:
hypoxia; N: normoxia; TSS: transcriptional starting site.
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Figure S3. TCF1 and TCF4 regulate the transcription of genes which expression is negatively
correlated with glioma grade. (A) Venn diagrams representing the intersection between the gene
lists retrieved from HIF-1o0/TCF1 commonly regulated genes under H (containing a peculiar 80bp
regulatory region as described) and genes potentially regulated by TCF4 under N. (B) Hierarchical
clustering analysis of the gene signature generated from the intersection of genes in (A) (85 genes)
applied to the GSE4290 dataset. (C, D) GO analysis of up-regulated (C, n=35) and down-regulated
genes (D, n=50) between GBM and normal brain samples from GSE4290 dataset. (E)
Representative brightfield images displaying the morphology of Luhmes cells when cultured in
stem cell medium (up) or after exposure to 10 days of neuronal differentiation induction cocktail
(bottom). Original magnification 10x; bar=25um. (F) Bar graph showing the expression of top
down-regulated genes from Fig. 2E (13/20) in Luhmes cells when cultured in stem cell medium
(blue) or upon 10 days of differentiation (red). FDR: false discovery rate; GO: gene ontology; H:
hypoxia; N: normoxia.
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Figure S4. TCF4 levels are inversely correlated to neuronal differentiation in GBM cells. (A,
B) Representative analysis of TCF1 and TCF4 protein (A) and mRNA (B) expression upon their
silencing with specific siRNAs by WB (HuTuP53) and RT-PCR (n=3), respectively. siNEG was
used as negative control of knockdown and for normalization in RT-PCR. B-actin was used as
loading control. (C) Representative immunofluorescence images of hypoxic siNEG/siTCF4-GBM
cells (HuTuP13) treated with Wnt3a (30ng/ml for 4d) and stained with Nestin (green) and BIII-
tubulin (red) antibodies. (D, E) Representative analysis of TCFAE protein (D) and mRNA (E)
expression upon pcDNA3.1-TCF4E transfection by WB (HuTuP53) and RT-PCR (n=3),
respectively. Empty pcDNA3.1 construct was used as negative control of over-expression and for
normalization in RT-PCR. p-actin was used as loading control. (F) Representative
immunofluorescence images of normoxic TCF4E-GBM cells (HuTuP53) treated with Wnt3a
(30ng/ml for 4d) and stained with Nestin (green) and BIII-tubulin (red) antibodies. In WB molecular
weights in kDa are reported near panels. In (C, F) original magnification 20x; bar=50um. In all
images cell nuclei have been counterstained with Dapi (blue). ****p<0.0001 by paired t-test. d:
days; WB: western blot.
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Figure S5. Concomitant transfection of a constitutive activated form of HIF-1a and TCF4
SiRNA. Representative Western Blot analysis of HIF-1o and TCF4 in H/N GBM cells (HuTuP53)
in which siTCF4 or pcDNA3.1-HIF-10AODD or both have been transiently transfected. f-actin was
used as loading control. Molecular weights in kDa are reported near WB panels. H: hypoxia; N:

normoxia.
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Figure S6. TCF1 knockdown impairs HIF-1a localization onto TCF/LEF consensus sequences.
(A) Graphic model of the 7XTCF/LEF binding site-based BAT-lux reporter construct used for
analyzing the binding of HIF-10 upon TCF/LEF consensus sequences. Primers used for amplifying
the HIF-1a-cross-linked plasmid sequences flanking the Wnt-responsive promotorial region for
ddPCR experiments are highlighted as red arrows. (B) Bar graph reporting the relative enrichment
of CAIX promoter sequences co-immunoprecipitated with HIF-1o under H or N, measured by
ddPCR amplification (n=3). ****p<0.0001 by paired t-test. ddPCR: droplet digital PCR; H:

hypoxia; N: normoxia.
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Figure S7. TCF4 is negatively correlated with neuronal differentiation. (A) Correlation graph
suggesting the existence of a negative correlation between TCF4 (score), HIF-1a (score). (B) Box
plot reporting the quantification of TCF4 score in our cohort of glioma samples and showing a
significant negative correlation with neuronal differentiation (p value calculated by Mann-
Whitney). (C) Bar graph showing the enrichment (by chi-square analysis) of BIII-tubulin expressing
(medium/high intensity) biopsies in TCF4,y and TCF4,,s glioma samples. neg: negative; pos:
positive.
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Figure S8. GBM samples from different regions of the mass show a differential transcriptional
enrichment of a HIF-1a-dependent gene signature. (A) Heatmap and hierarchical clustering
analysis of differentially expressed genes (p<0.05, FDR q value<0.05) between GBM samples
(n=4) derived from the Core and the Periphery of the mass. (B) Box plot reporting the
quantification of HIF-1a score in GBM Core and Periphery (p value calculated by Mann-Whitney).
(C) Bar graph representation of GSEA for gene sets either enriched in the GBM core or periphery.
(D) Representative GSEA of differentially expressed genes between Core and Periphery showing
significant positive enrichment for KEGG Glycolysis Gluconeogenesis gene set in GBM core and
positive enrichment for KEGG Oxydative phosphorylation gene set in GBM periphery. FDR: false
discovery rate; GSEA: gene set enrichment analysis; NES: normalized enriched score.
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Figure S9. GBM samples from different regions of the mass show a differential transcriptional
enrichment of Wnt signaling components and GBM molecular subtype features. (A, B) Bar
graphs reporting a differential mRNA relative expression of Wnt signaling receptors (A; FZD3,
LRP5 and LRP6) and intracellular components (B; BTRC, CCND2, PPARD) between GBM samples
derived from the Core and the Periphery of the mass (n=10). (C-E) Level plots reporting the
differential expression of Wnt signaling receptors (C), Wnt signaling-dependent calcium signaling
components (D) or Wnt signaling-dependent cell polarity regulators (E) between GBM Core and
Periphery. (F) Heatmap and hierarchical clustering analysis of 60/84 genes previously demonstrated
to share a peculiar transcriptional control exerted by HIF-1a/TCF1 in hypoxia and TCF4 in
normoxia (Fig. 2C-E) which show a significant over-expression in GBM periphery. (G-1) GSEA of
differentially expressed genes between GBM Core and Periphery showing that Core biopsies are
negatively enriched for Proneural (G) and Neural (H) transcriptional features, but positively
correlated to a Mesenchymal GBM phenotype (I). FDR: false discovery rate; GSEA: gene set
enrichment analysis; NES: normalized enrichment score.



TABLES S1, S2 and S5

Table S1. Clinical features of glioblastoma patients from which primary cell cultures used in this
study have been derived.

Patient ID ‘ Diagnosis WHO grade ‘ Gender Age (y)
HuTuPO01 GBM v Male 64
HuTuP10 GBM v Female 75
HuTuP13 GBM v Male 67
HuTuP15 GBM v Female 76
HuTuP36 GBM v Female 49
HuTuP43 GBM v Male 59
HuTuP47 GBM v Female 81
HuTuP53 GBM v Male 70
HutuP82 GBM v Male 50
HuTuP83 GBM v Male 55
HuTuP108 GBM v Male 62
HuTuP174 GBM v Male 69
HuTuP175 GBM v Female 57
HuTuP187 GBM v Male 56
HuTuP197 GBM v Male 48
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Table S2. Clinical features of glioblastoma patients from which total RNA has been extracted from
core and peripheral GBM tissues according to a multiple sampling procedure as described in the
Material and methods section.

Patient ID Diagnosis WHO grade  Gender Age (y) RT-PCR GEP

HuTuP64 Glioblastoma v Male 60 . .
HutuP67 Glioblastoma v Male 48 .
HutuP70 Glioblastoma v Male 40 .
HuTuP95 Glioblastoma v Male 66 .
HuTuP107 Glioblastoma v Male 65 . .
HuTuP109 Glioblastoma v Male 58 . .
HuTuP119 Glioblastoma v Male 54 . .
HutuP120 Glioblastoma v Male 54 .
HutuP144 Glioblastoma v Female 46 .
HutuP169 Glioblastoma v Female 61 .
HutuP185 Glioblastoma v Male 59 .
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Table S5. Sequence of primers used in this study.

GENE

FORWARD PRIMER (5°-3%)

REVERSE PRIMER (5’-3°)

BAT-lux plasmid
TCF7

TCF7L2
CHRM3
CMIP
LRP1B
LRP5
LRP6
FzZD3
BTRC
CCND2
PPARD
CA9
GUSB
STMNZ2
CNTN4
LINGO2
OPCML
DNM3
CBLN2
ANKS1B
EDIL3
CNTNAP2
LRP1B
RUNX1T1
CMIP
PTPN3
PAK1

CGCGGGAATTCGATTAAGGAC
CCTAGCAAGGAGGAGCGAGA

TTTAAGGGGCCACCGTATCC
GCCGGGATCATCATGACCGT
GGGGTCTCGCACAGGTTCAG
AGATGCTGTGGCCAAACGGT
AACGGCAGGACGTGTAAGGC
CGCCGGTGAGAGAAGAGAACG
CCAACAGACAGCAGCTTTGGC
CCTCTGATGGCATGCTGTGGA
GTGGGAGCAGCCATCTGTGG
GGCCCTATTCATTGCGGCCA
CAGTTGCTGTCTCGCTTGGA
GAAAATACGTGGTTGGAGAGCTCATT
TTCAGCAAGATGGCGGAGGA
ACCACTTTGAAAGAGTTGGAGGGC
AGCAGAGCACCGAAAGTGGC
TGTTCCTTGTACCCACAGGAGTG
TCCTGACAAATCTGTAGGGAACA
CGAGATGAGCAACCGCACCA
AGGGGGACACTCCTCCACAC
AGCTCGGCTGGACAAGCAAG
GTCAACATCACCCGCCACGA
AGATGCTGTGGCCAAACGGT
CCGGAGTGTCAGCTCTCCATC
CCCTCCAAGTCCACAGACGC
CGGTTACGTGCGTTGGGTG
GCTGCTACAGGTGAGAAAACTGAGG

AACAGGGGACAAAGGGTGTG
CCGGTTGGCAAACCAGTTGTAG

TGCCGGACTGAAAATGGAG
TGCATCGGAGGGGCTGTGTAT
GGGGTCTCGCACAGGTTCAG
TGCGACAGTCCGAAAGGGTG
AGCCCTCTAGCGGGTCGTAG
AACCAATCGCAAGTCCCGTCT
TAAGCCCGCTGACACAGCCT
TGGGAGGAGCATTCCCGTCA
GAGCACCGCCTCAATCTGCT
CTGGGCATCAGGGTGGTTGG
TCAGAGGGCAGGAGTGCA
CCGAGTGAAGATCCCCTTTTTA
ATGCCTCTCATTGCTTCTCTCCTT
ATGGGGCTGTGGTTGTCAGG
ACGAACCTTGAAAGCTGCATTCTG
TGACCAGGATGATCACACGAGGG
GAGGTTGCGAATGGTCTCCA
GGTCTCCTGCAAAGGCCGAG
CTGATGGTTCCTGCCCGGTAT
TGCCAGTCACTTTGGTTGGAACA
GCCTTGAGAGGGGCGATCTG
TGCGACAGTCCGAAAGGGTG
ACATCCACAGGTGAGTCTGGC
GGGGTCTCGCACAGGTTCAG
CCCAGGTGGTTGTGCACCATA
AGGCTTGGCACAATGAGGCT
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