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Supplementary Methods 

Surprisal analysis.  

Surprisal analysis is a thermodynamic-based information-theoretic approach [1–3]. The analysis is based on the 

premise that biological systems reach a balanced state when the system is free of constraints [4–6]. However, when 

under the influence of environmental and genomic constraints, the system is prevented from reaching the state of 

minimal free energy, and instead reaches a state which is higher in free energy (in biological systems, which are 

normally under constant temperature and constant pressure, minimal free energy equals maximal entropy). 

For example, if the system under study is a living cell, an environmental constraint can be exposure to a drug, which 

inflicts a change in protein concentrations and activities in the cell. The system can be influenced by genomic 

constraints as well, such as genomic mutations that in turn affect protein function, often eliciting alteration of specific 

signaling pathways to oppose the functions of the damaged protein.  

Surprisal analysis can take as input the expression levels of various macromolecules, e.g. genes, transcripts, or 

proteins. However, be it environmental or genomic alterations, it is the proteins that constitute the functional output in 

living systems, therefore we base our analysis on proteomic data. The varying forces, or constraints, that act upon 

living cells ultimately manifest as alterations in the cellular protein network. Each constraint induces a change in a 

specific part of the protein network in the cells. The subnetwork that is altered due to the specific constraint is termed 

an unbalanced process. System can be influenced by several constraints thus leading to the emergence of several 

unbalanced processes. When tumor systems are characterized, the specific set of unbalanced processes is what 

constitutes the tumor-specific signaling signature. 

For every protein, i, surprisal analysis calculates its expected expression level when the system is at the steady state 

and free of constraints: Xi
0. This term was shown to be constant, i.e. is independent of time and of the actual state of 

the system [7–10]. In terms of information theory, Xi
0 represents the state of maximal entropy, or minimal information. 

Xi(k) is the actual, experimentally measured expression level of the protein i in the tumor k. In cases where Xi(k)≠ Xi
0, 

we assume that the expression level of the protein i was altered due to constraints that operate on the system. Surprisal 
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analysis discovers the complete set of constraints operating on the system in any given tumor, k, by utilizing the 

following equation [7]: 

ln Xi(k) = ln Xi
0(k) – ΣGiαλα(k) (1) 

The term ΣGiαλα(k) represents the sum of deviations in expression level of the protein i due to the various constraints, 

or unbalanced processes, that exist in the tumor k. The processes are indexed α =1, 2, 3, … , such that the dominance 

of the process decreases with increasing index, i.e. unbalanced process 1 is active in more tumors than unbalanced 

processes 2, 3 etc.  

The difference between the steady state expression level, Xi
0, and the actual expression level, Xi(k), represents the 

amount of information we have about protein i. A protein that is influenced by constraints, i.e. is influenced by one or 

more unbalanced processes and is therefore functionally linked to other proteins, cannot take any possible expression 

level. Rather, its expression level is affected by the expression levels of other proteins.  

The term Giα denotes the degree of participation of the protein i in the unbalanced process α, and its sign indicates the 

correlation or anti-correlation between proteins in the same process. For example, in a certain process α, proteins can 

be assigned the values: Gprotein1,α = -0.50, Gprotein2,α = 0.24, and Gprotein3,α = 0.00, indicating that this process altered 

proteins 1 and 2 in opposite directions (i.e. protein 1 is upregulated and protein 2 is downregulated, or vice versa due 

to the process α), while not affecting protein 3. Note that each protein can take part in a number of unbalanced 

processes at once. 

Importantly, not all processes are active in all tumors. The term λα(k) represents the importance of the unbalanced 

process α in the tumor k. Its sign indicates the correlation or anti-correlation between the same processes in different 

tumors. For example, if the process α is assigned the values: λα(1) = 3.1, λα(20) = 0.0, and λα(138) = 2.5, it means that 

this process influences the tumors of the patients indexed 1 and 138 in the same direction, while it is inactive in patient 

20.  

The partial deviations in expression level of the protein i due to the different constraints sum up to the total change in 

expression level (relative to the balance state level), ΣGiαλα(k) . 

Surprisal analysis uses a covariance matrix of the surprisals, meaning the covariance of the natural logarithms, as an 

intermediate numerical step (11). This has a physical, rather than purely statistical, significance [7]. That matrix has a 
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mathematical form dictated by the theory, which relates changes in protein concentrations to changes in chemical 

potentials (see mathematical explanation below). A change in chemical potential is directly related to the change in the 

free energy of the system. Therefore, changes in chemical potential of molecules allow us to predict the direction of 

biochemical reactions, and the behavior of the system [11]. Hence, our method allows interpretation of protein 

expression level changes from a different angle, i.e. according to thermodynamic-based laws. We have recently 

demonstrated that the approach allowed us to predict the direction of cell-cell movement [12,13], or the response to 

drugs [14]. Furthermore we have recently compared surprisal analysis to the pure statistical techniques widely used in 

biology, such as Principle component analysis and clustering methods, and have found that surprisal analysis provided 

a higher degree of resolution of biological cancer heterogeneity [9]. The detailed explanation about the main 

differences between surprisal analysis and other techniques can be found in [15].  

A change in chemical potential for each protein is calculated using ln Xi(k) = ln Xi
0(k) + (µi-µi

0)/kT. This equation is 

developed further, to obtain the main equation in the text: (1) ln Xi(k) = ln Xi
0(k) – ΣGiαλα(k).  Thus, a change in the 

chemical potential of protein i, (µi-µi
0)/kT, is represented by ΣGiαλα(k), denoting that the change in chemical potential 

occurred due to genomic and environmental constraints that operate in the tumor, indexed α = 1, 2, … [3,12]. The 

method of Lagrange undetermined multipliers is utilized to calculate the maximal entropy and to determine the λα(k) 

values. 

To fit the sum of the terms, as shown on the right-hand side of the main equation ([1]), to the logarithm of the 

measured expression level of protein i in a tumor k we use singular value decomposition (SVD). SVD serves as a 

method for diagonalizing the matrix that includes the logarithm of protein intensities in tumor k. In other words, SVD 

is used as a fitting method to bridge between the theory: ln Xi(k) = ln Xi
0(k) – ΣGiαλα(k); and experimental protein 

expression levels [7].  

We determine the minimal number of unbalanced processes needed to accurately reconstruct the experimental protein 

expression levels, as described in the next section. For more details regarding the mathematical analysis see references 

[7] and [12]. For comparison between surprisal analysis and common statistical methods used today, such as Principle 

component analysis and clustering methods see [15,16]. 

As explained above, the zeroth term, ln Xi
0(k), is the expression level at the steady state of the system (the most 

significant process), invariant term, which was found not to change between patients or in time [7–10]. This term is 
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utilized as a reference against which the deviation terms are identified. In the dataset analyzed in this manuscript, the 

expression levels of the proteins were normalized according to the median values. Since steady state distribution is 

composed of these reference values (ln Xi
0(k)), mean/median centering of the data does not allow to determine this 

distribution explicitly. The zeroth term becomes a vector of zeros for all proteins i in all samples, and the dataset is 

fitted to the unbalanced processes. Equation (1) is reduced to the form: 

ln Xi(k) - lnM = (ln Xi
0(k) - lnM) - ΣGiαλα(k) 

ln (Xi(k)/M) ≈ - ΣGiαλα(k) 

where M represents the median value. 

Theoretically, the number of constraints that operate on the system is limited by the smaller dimension of the input 

matrix [7]. In our case it is limited by the number of macromolecules measured, i.e. in the current dataset, the levels of 

181 proteins were measured, and therefore a maximum of 181 constraints, or unbalanced processes that operate on the 

system could have been found. However, most of these processes are insignificant, i.e. have a negligible weight, λα, in 

all samples. Our analysis revealed only 17 significant unbalanced processes, which reproduce the experimental 

expression levels of the proteins in the dataset (Fig. S2).  Figure S4 demonstrates the robustness of surprisal analysis, 

and shows that the size of the dataset studied here is large enough. A smaller dataset, of 100 tumors of each type, did 

not change the results of our analysis.   

Determination of the number of significant unbalanced processes. (see [15] for more details). The analysis of the 

3467 patients provided a 3467x181 matrix of λα(k) values, such that every row in the matrices contained 3467 values 

of λα(k) for 3467 patients, and each row corresponded to an unbalanced process (Table S2). However, not all 

unbalanced processes are significant. Our goal is to determine how many unbalanced processes are needed in order to 

reconstruct the experimental data, i.e. for which value of n: ln (Xi(k)/M) ≈ - ΣGiαλα(k). To find n, we performed the 

following two steps: 

(1) Processes with significant amplitudes were selected: To calculate threshold limits for λα(k) values (presented in 

Table S2 and Fig. S5) the standard deviations of the levels of 10 most stable proteins in this dataset were calculated 

(e.g. those with the smallest Standard deviations values, such as Annexin VII). Those fluctuations were considered as 

baseline fluctuations in the population of the patients which are not influenced by the unbalanced processes. Using 
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standard deviation values of these proteins the threshold limits were calculated as described previously [17]. The 

analysis revealed that from α = 18, the importance values, λα(k), become insignificant (i.e. do not exceed the noise 

threshold), suggesting that 17 unbalanced processes are enough to describe the system.  

 (2) Reproduction of the experimental data by the unbalanced processes was verified: To verify that the number 

of processes identified in step (1) is correct, we plotted ΣGiαλα(k) for α =1, 2, … , n against ln Xi(k) for different 

proteins, i, and for different values of n, and examined the correlation between them as n was increased. An 

unbalanced process, α = n, was considered significant if it improved the correlation significantly relative to α = n - 1. 

Figure S2 exemplifies this process for pEGFR, showing that increasing n from 17 to 21 did not significantly affect the 

correlation. 

Generation of functional subnetworks.  

The functional subnetworks presented in Figure S1 were generated using a python script (written with the assistance 

of Mr. Jonathan Abramson). The goal was to generate a functional network according to STRING database, where 

proteins with negative G values are marked blue and proteins with positive G values are marked red, to easily identify 

the correlations and anti-correlations between the proteins in the network. The script takes as an input the names of the 

genes in the network and their G values, obtains the functional connections and their weights from STRING database 

(string-db.org), and then plots the functional network (using matplotlib library). 

Note: Since the antibodies against pY(1248)ErbB2 and pY(1068)EGFR were noticed to cross react in the original 

RPPA assay[18], the following corrections were made to our analyses: In unbalanced processes in which both 

pY(1248)ErbB2 and pY(1068)EGFR were significant, EGFR was considered to be active only if pY(1173)EGFR was 

significant as well. pY(1248)ErbB2 was considered to be a false-positive result and was thus omitted from these 

processes. Therefore, pY(1248)ErbB2 was omitted from the unbalanced processes 1,5,10,13,14  .  

Calculation of barcodes.  

The barcodes presented in Table S4, Figures 4-7 and Figure S6 were generated using a python script (written with the 

assistance of Mr. Jonathan Abramson). For each patient, λα(k) (α = 1, 2, 3, …, 17) values were normalized as follows: 

If λα(k) > 2 (and is therefore significant according to calculation of threshold values) then is was normalized to 1; if 

λα(k) < -2 (significant according to threshold values as well) then it was normalized to -1; and if -2 < λα(k) < 2 then it 
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was normalized to 0. Table S4 lists the 452 unique barcodes that were identified, their frequency in each cancer type 

and their overall frequency in all 3467 tumors. The results are shown graphically in Figures 4-7 and in Figure S6.   

Cell lines and reagents.  

MDA-MB-231 (triple negative breast cancer), MDA-MB-468 (triple negative breast cancer), and MCF7 (lumA breast 

cancer) were obtained from the American Type Culture Collection (ATCC) and cultured in RPMI with 10% fetal calf 

serum (FCS), supplemented with 100 U/ml penicillin and 100 mg/ml streptomycin, and grown at 37ºC/5% CO2. The 

cell lines were authenticated at the Biomedical Core Facility of the Technion, Haifa, Israel. 

Methylene blue (sc-215381) and anti-T(202)Y(204)ERKMAPK (sc-7383) were from Santa Cruz Biotechnology (Santa 

Cruz, CA), 4-hydroxy-Tamoxifen (H7904) was from Sigma Aldrich (St. Louis, MO), anti-pY(1068)EGFR (#3777), 

anti-PARP (#9542), anti-pS(235/236)S6 (#4858) were from Cell Signaling Technology (Beverly, MA), 2-deoxy-D-

Glucose was from MP Biochemicals (Santa Ana, CA), HRP-conjugated goat anti-mouse and HRP-conjugated goat 

anti-rabbit were from Jackson ImmunoResearch Laboratories, Inc. (West Grove, PA), trametinib, erlotinib and 

LY2584702 were from Cayman Chemicals (Ann Arbor, MI), taxol (paclitaxel) was from Teva Pharmaceutical 

Industries, Ltd. (Israel). 

Methylene blue assays.  

Cells were seeded in 96-well plates and grown under complete medium. The next day, inhibitors were added for 72 

hours. The cells were then fixed and the amount of surviving cells was quantified by staining with methylene blue 

(Sigma) as described in[19]. 

Western blot analysis.  

Cells were seeded in 6-well plates and grown under complete medium. The next day, cells were treated as indicated 

for 48 hours, and then the cells were collected into clean tubes (including the fraction of floating dead cells) and lysed 

using hot sample buffer (10% glycerol, 50 mmol/L Tris-HCl pH 6.8, 2% SDS, and 5% 2-mercaptoethanol). Western 

blot analysis was carried out as described previously [20].  
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Supplementary Figures and legends 

Figure S1. 
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Figure.S1 The unbalanced subnetworks identified by surprisal analysis for 3467 tumors. (A-Q) For every 
process α, the proteins were assembled into networks using functional interactions according to STRING database. 
ppAkt = Akt phosphorylated on Thr308 and on Ser473; ppEGFR = EGFR phosphorylated on Tyr1068 and on 
Tyr1173. (R) The correlation index, R, was calculated for every pair of processes. The results are shown in heatmap 
form and demonstrate the independence of the 17 processes. 
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Figure S2.  

 

 

Figure. S2 17 unbalanced processes span the entire biological imbalance in 3467 tumors. To show that the first 
17 unbalanced processes are enough to reproduce the dataset, we looked whether the changes in the experimental 
protein expression levels can be fitted well by 17 unbalanced processes that appeared to be significant (exceed the 
threshold limits). For example, for every tumor k, the theoretical expression level of pEGFR in this tumor 
(ΣGpEGFR,αλα(k) for α =1, 2, … , n) was plotted against the experimental expression level (lnXpEGFR(k)), in 4 different 
cases: (A) Only the first, most significant unbalanced process was taken into account (n=1). (B) The 10 most 
significant unbalanced processes were taken into account (n=10); (C) The 17 most significant unbalanced processes 
were taken into account (n=17); (D) The 21 most significant unbalanced processes were taken into account (n=21). 
Theoretically, if the experimental values exactly coincide with the theoretical values, all of the points on the graph 
should fall on the y=x line. The plots nicely shows how 17 unbalanced processes are enough to reproduce the 
expression levels of EGFR in all tumors. 

Importantly, processes =16 and =17 had significant λα(k) values (λα(k) > 2 or λα(k) < -2) in some of the patients (see. 
For example, Fig. S5) and thus had to be considered. In contrast, processes α = 18, 19, … , 181 did not have significant 
values in any of the patients. Moreover, the plot of the data reproduction did not change significantly when the processes 
α = 18, 19, 20, 21 were added (see panel C vs. panel D). Thus, we conclude that the current dataset is well characterized 
by 17 unbalanced processes.  
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Figure S3. 

 

Figure. S3 Only proteins with significant Giα values are considered to participate in the unbalanced process α. 
The proteins that take part in the different unbalanced processes were identified as follows: For every unbalanced 
process α, Giα values were sorted according to their size, and only proteins with significant Giα values were considered 
to participate in the unbalanced process α. This is exemplified for the process α = 1 in the figure. Shown are sorted 
values of Gi1, which represent the degree of participation of every protein i in the unbalanced process α = 1. The gray 
box represents threshold values. Proteins with Gi1 > 0.1 or Gi1 < -0.1 (which are not contained in the gray box and 
form the top and bottom "tails" of the distribution) were considered to participate the most in the unbalanced process  
α = 1. These proteins were used to build a functional subnetwork using STRING database, presented in Figure S1.   
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Figure S4. 

 

Figure. S4 Patient diagnoses remain essentially the same when a smaller matrix was analyzed. Since our technique 
involves identifying patient-specific unbalanced processes based on studying a large number of tumors at once, it is 
relevant to ask whether the size of the dataset analyzed here is large enough to be considered a representative sample. 
To address this, 100 patients from each tumor type were randomly chosen, and the same analysis was performed on this 
smaller matrix. The results are presented in the figure. (A-C) λα values for 3 random patients are shown, demonstrating 
that their diagnoses remain essentially the same when only 1100 tumors were used for the analysis instead of 3467. (D) 
Gi1 values obtained from the analysis of the small matrix were plotted against Gi1 values obtained from the analysis of 
the original matrix, demonstrating that the results are very similar.  
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Figure S5. 

 

Figure S5. While some unbalanced processes frequently characterize specific tumor types, no tumor type carries 
a specific signature. The figure presents λα(k) values of the 17 unbalanced processes for all tumor types. The gray boxes 
mark threshold limits. 
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Figure S6. 
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Figure S6. The majority of tumors are characterized by rare barcodes. (A) 452 unique barcodes characterize the 
entire population of 3467 tumors. The different barcodes were sorted according to their frequency in the entire 
population of tumors. The dashed box shows the 16 most abundant barcodes. The rare barcodes (376 barcodes which 
characterize only 5 tumors or less) are highlighted in orange. (B-L) The majority of tumor type-specific barcodes are 
rare. For each of the tumor types, the collection of unique barcodes that characterize the specific tumor type were 
plotted. Rare barcodes are highlighted in orange.  
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Figure S7. 

 

Figure S7. A two-dimensional representation of the tumor imbalances masks the patient-explicit network 
structure. (A-C) The amplitudes of the three most significant unbalanced processes, λ1(k), λ2(k), and λ3(k), were 
plotted against each other in pairs in order to examine the information that these plots can provide. Some cancer types 
are nicely separated, e.g. GBM, KIRC and BRCA by λ2 (panels a and b) and λ3 (panels b and c). However, though 
some cancer types can be separated to some extent according to these 3 processes, representation of tumors using 
these 2D graphs does not enable the accurate mapping of individual tumors. Many tumors with distinct protein 
network structures appear in the same place in these graphs, e.g. most UCEC and HNSC tumors, which we found to 
be highly heterogeneous. These results demonstrate that a partial identification of unbalanced molecular processes 
does not suffice to accurately map the cancer patients. 
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Figure S8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S8. The unbalanced subnetworks identified by surprisal analysis for 10 cell lines. For every process α, the 
proteins were assembled into networks using functional interactions according to STRING database.  
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Figure S9. 

 

Figure S9. Different combinations of drugs are effective against different TNBC cell lines. Trametinib + 2-DG 
was the combination of drugs predicted for MDA-MB-231. We compared the effect of this combination on the 
survival of MDA-MB-231 to its effect on the survival of MDA-MB-468 (A). Similarly, the effect of the combination 
predicted for MDA-MB-468, trametinib + erlotinib + 4OHT, on the survival of MDA-MB-468 was compared to its 
effect on the survival of MDA-MB-231 (B). The results shown demonstrate that the predicted combinations were cell 
line-specific, and suggest that different TNBC tumors may benefit from different combinations of drugs, that are 
specifically tailored to their altered signaling signature.   
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Figure S10. 

 

Figure S10. Literature support for the combined therapies suggested by the analysis. (A-B) The most frequent 
barcodes in 469 ER positive breast cancer patients (ER positive were defined as breast cancer patients in the dataset 
with log2(ER expression levels) > 1, see encircled subpopulation in (A)) are shown (B). 43% of 469 ER positive 
patients, have a barcode with active process 3 (B) and would be suggested to receive an anti-ER monotherapy, 
corresponding to the current clinical routine. However, other patients (4 additional barcodes are shown for ER positive 
subgroups comprising > 1% of ER positive subpopulation (B)) would benefit from combined therapies that include 
Ramucirumab + Tamoxifen or Erlotinib + Tamoxifen (Table S7). These combinations are proposed by the literature as 
potential effective combinations for ER resistant breast cancer ([21,22]. (C) Most frequent barcodes are shown for 
Glioblastoma Multiforme (~11% of GBM patients), Colon (~32% of colon cancer patients) and Lung adenocarcinoma 
(31% and 9% of lung cancer patients, Table S4). The suggested therapies for these barcodes (Table S8) are proposed 
by the literature as potential effective combinations for those cancer types [23–26]. 
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Figure S11. 

 

Figure S11. Protein composition of unbalanced processes remained the same before and after addition of the prostate 
carcinoma dataset. The weights of the proteins in every unbalanced process from the first dataset were highly correlated 
with the weights of the proteins after addition of the prostate carcinoma dataset. The correlation coefficient R is above 
0.7 for 15 processes, meaning that the correlation is strong, for only 2 processes R was above 0.5-0.6, pointing to 
moderately strong correlation. Ori -denotes analysis of the original dataset and new- denotes the values after adding the 
validation (prostate cancer) dataset. 
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