Supplementary Table S1

PC downregulation												
ProbeName	P-value	Absolute	Regulation([P	type	seqname	GeneSymb	source	RNAlengt	chro	stran	txStart	txEnd
		Fold	C] vs [NP])			ol		h	m	d		
		change([P										
		C] vs [NP])										
ASHG19A3A0374	0.0177513	2.10767226	down	noncoding	ENST000004143	CR848007.	Ensemb	343	chr9	-	44021071	44021414
27	41	4			55	6	1					
ASHG19A3A0328	0.0026657	2.83593998	down	noncoding	ENST000004341	CTD-	Ensemb	423	chr7	-	51456093	51457401
10	68	1			61	2021A8.3	1					
ASHG19A3A0447	0.0207932	2.32466801	down	noncoding	ENST000004497	AC068580.	Ensemb	338	chr11	-	1798159	1799618
51	53	5			49	7	1					
ASHG19A3A0439	0.04265114	2.04974508	down	noncoding	ENST000004350	RP11-	Ensemb	1884	chr10	+	59715054	59716938
72		3			86	448K10.1	1					
ASHG19A3A0297	0.02112530	2.11128816	down	noncoding	ENST000005016	AL662799.	Ensemb	1912	chr6	-	33395516	33421465
93	8	2			46	2	1					
ASHG19A3A0350	0.0030010	3.24112688	down	noncoding	ENST000004454	AC018643.	Ensemb	744	chr7	+	13194561	13195602
90	7	3			59	4	1				9	8
ASHG19A3A0466	0.0071907	2.20040715	down	noncoding	ENST000004292	AP001271.	Ensemb	356	chr11	+	70492269	70493667
96	16	6			68	4	1					
ASHG19A3A0187	0.0207369	2.36778945	down	noncoding	ENST00004064	AP000567.	Ensemb	156	chr21	-	31898863	31899019
58	14	3			13	27	1					
ASHG19A3A0324	0.0109362	2.24831667	down	noncoding	ENST00003422	RP11-	Ensemb	897	chr7	-	6874471	6920187
54	27				75	740N7.1	1					
ASHG19A3A0325	0.0206954	2.00872156	down	noncoding	ENST000004217	AC005682.	Ensemb	675	chr7	-	22928989	22980809
44	05	3			30	8	1					

PC upregulation												
ASHG19A3A0268	0.0290962	2.34710283	up	noncoding	ENST000005100	CTD-	Ensemb	2025	chr5	-	56613815	56615847
24	42				53	2516K3.3	1					
ASHG19A3A0514	0.0013765	2.43998579	up	noncoding	ENST000002543	UBE2L7P	Ensemb	465	chr14	+	55695934	55696399
46	58	7			02		1					
ASHG19A3A0155	0.0068773	2.84426749	up	noncoding	ENST000003950	GAPDHP2	Ensemb	1002	chr2	+	38512551	38513558
37	29				92	5	1					
ASHG19A3A0536	0.0101277	2.96823331	up	noncoding	ENST000003797	RP11-	Ensemb	1532	chr1	-	15702902	15703055
59	34	9			52	110J1.2	1				2	4
ASHG19A3A0440	0.0135760	2.38988632	up	noncoding	ENST000004156	RP11-	Ensemb	438	chr10	+	70184316	70184754
34	93	8			23	9E13.4	1					
ASHG19A3A0343	0.0080793	2.00610247	up	noncoding	ENST000004347	RP11-	Ensemb	2818	chr7	+	55804471	55807289
57	81	1			45	613E4.2	1					
ASHG19A3A0446	0.0012000	2.07665635	up	noncoding	ENST000004173	CTAGE7	Ensemb	2823	chr10	+	13190427	13190709
59	56	7			51		1				2	5
ASHG19A3A0307	0.0009409	2.22148053	up	noncoding	ENST000004059	RP1-	Ensemb	362	chr6	-	15328041	15328077
15	44	5			59	101K10.4	1				1	3
ASHG19A3A0388	0.0292588	2.05208857	up	noncoding	ENST000004515	ATP5J2P3	Ensemb	258	chr9	+	79655331	79655589
09	24				50		1					
MTA2TR	0.0364183	2.1795511	up	misc_RNA				158	chr11	+	62321164	62321291
	82											

Supplementary Table S2

	ding [Potenti	al Calcula				
HOME RUN CPC quick links Run CPC Get Results Quick Guide Download	Th You may u the CPC re	nis is the Table V se the ID to retresults.	iew of CPC results. Your ieve your results later in	task ID is I our view r	80214B10-57 etrieve page	7 33-11E7-9EC . You can als	OD-B99392AAE7A3 . so view <mark>Raw Data</mark> of
Documents	ID	C/NC	CODING POTENTIAL SCORE	EVIDENCE	UTR-DB HITs	RNA-DB HITs	
	AF083120.1	noncoding (weak)	-0.442783	detail	search	search	
	view filte	r ing status: all	▼; score range: :		; sort	by: SCORE	▼ refresh

Home ***** Run CPC ***** Documents ***** Contact

Copyright © 2006 - 2015 Center for Bioinformatics, Peking University. All rights reserved.

Calculator User Guide Feedback Source Code

Result for species name : hg19 with job ID :1483842968								
Data ID	Sequence Name	RNA Size	ORF Size	Ficket Score	Hexamer Score	Coding Probability	Coding Label	
0	AF083120.1	158	60	0.7756	-0.192355461921	0.0018496507672512	no	

This job has been stored with the job ID Download Table in tab delimetered file (.txt)

For suggestions, comments or queries about this website, please leave your feedback through <u>Feedback</u>. Copyright © 2012. All rights reserved.

Supplementary Table S3: Correlation between overexpressed lncRNA-MTA2TR and clinical characteristics of patient with pancreatic cancer

		MTA2TR	expression	
Characteristics	Number of cases	High	low	P value
Total cases	40			
Gender				
Male	22	10	12	0.3239
Female	18	11	7	
Age				
<60	20	13	7	0.7440
≥60	20	12	8	
Tumor size(cm)				
<2	18	13	5	0.011*
≥ 2	22	7	15	
Histological Grade				
High/Moderate	21	14	7	0.0267*
Low	19	6	13	
Lymphatic invasion				
Positive	25	17	8	0.0329*
Negative	15	5	10	
Vascular invasion				
Positive	24	13	11	0.5186
Negative	16	7	9	
Distant Metastasis				
Positive	21	16	5	0.0120*
Negative	19	7	12	

Note: Overexpression of lncRNA-MTA2TR was significantly associated with large tumor size (P = 0.011), poor tumor differentiation (P = 0.0222), lymphatic invasion (P = 0.0329), distant metastasis (P = 0.0120) and TNM stage (P = 0.0267), but not with patients' age (P = 0.744), gender (P = 0.3239) and vascular infltration P = 0.5186). The p-value represents the comparison between groups (*p < 0.05, **p < 0.01).

Primer	Sequence
MTA2TR	Forward: 5'-CACTTCCACGCTCCTTACCA-3'
	Reverse: 5'-GAGCGAGGCATCTAAAGGCT-3'
MTA2	Forward: 5'-GGCGCAGGGACATTTCTAGT-3'
	Reverse: 5'-AGAAGTGTCTTCTGCACGGG-3'
preMTA2	Forward: 5'-CAAGCGTCAGAAACTAAACC-3'
	Reverse: 5'-GAAAGAGCAAGTGGGAAAC-3'
ATF3	Forward: 5'-CTAAGCAGTCGTGGTATGG-3'
	Reverse: 5'-TGGAGTTGAGGCAAAGAT-3'
GAPDH	Forward: 5'-TGAACGGGAAGCTCACTGG-3'
	Reverse: 5'-TCCACCACCCTGTTGCTGTA-3'
β-actin	Forward: 5'-CATGTACGTTGCTATCCAGGC-3'
	Reverse: 5'-CTCCTTAATGTCACGCACGAT-3'
MTA2 CHIP	Forward: 5'-GGTCACTCCAGCTTCATCACT-3'
Primer	Reverse: 5'-ACAGCTTCCACGAGTTCCTC-3'
HIF-1α	Forward: 5'-CAAGATCTCGGCGAAGCAA-3'
	Reverse: 5'-GGTGAGCCTCATAACAGAAGCTTT-3'
MTA2TR CHIP	Forward: 5'-TCCACCACCATTCAGAGG-3'
Primer1	Reverse: 5'-GAGCCCAAGGTTCATTACAGACGCG-3'
Primer2	Forward: 5'-CCAGAAGGCAAATGAAGT-3'
	Reverse: 5'-GATGGTGCTAAGAAGGGTT-3'
Primer3	Forward: 5'-TTACAGTTCCCTAAGTCCAGTT-3'
	Reverse: 5'-TCAGATGTAGCGATCCAAGT-3'
MTA2TR FISH	Forward:5'-TAATACGACTCACTATAGGGGGGTAGGGTTGCCAAGGT-3'
(Northern blot)	Reverse:5'-CAGGGCTGGCTCCACTTCCACGCTC-3'
MTA2TR RNA	Forward:5'-TAATACGACTCACTATAGGGCGGGGGGGGGGGGGGGGGG
Pull down	CCCTGGCCCCAGGGCTGGCTCCACTT-3'
	Reverse:5'-GGTAGGGTTGCCAAGGTGGACACAGCATACCAA-3'
VEGFa	Forward:5'-CATCTTCAAGCCATCCTGTGTG-3'
	Reverse:5'- CCGCATAATCTGCATGGTGAT-3'
VEGFb	Forward:5'-GAGATGTCCCTGGAAGAACACA-3'
	Reverse:5'-GAGTGGGATGGGTGATGTCAG-3'
LOX	Forward:5'-CGGCGGAGGAAAACTGTCT-3'
	Reverse:5'-TCGGCTGGGTAAGAAATCTGA-3'
LOXL2	Forward:5'-GGGTGGAGGTGTACTATGATGG-3'
	Reverse:5'-CTTGCCGTAGGAGGAGCTG-3'
PLOD2	Forward:5'-CATGGACACAGGATAATGGCTG-3'
	Reverse:5'-AGGGGTTGGTTGCTCAATAAAAA-3'
TUBAIA	Forward:5'-TCGATATTGAGCGTCCAACCT-3'
	Reverse:5'-CAAAGGCACGTTTGGCATACA-3'

Supplementary Table S4. The sequence of PCR primers.

_

siRNA	Sequence
NC-siRNA	Sense: 5'-UUCUCCGAACGUGUCACGUTT-3'
(siNC)	Antisense: 5'-ACGUGACACGUUCGGAGAATT-3'
CATX-4-homo-37	Sense: 5'-UCCACUUCCACGCUCCUUATT-3'
(siMTA2TR#1)	Antisense: 5'-UAAGGAGCGUGGAAGUGGATT-3'
CATX-4-homo-86	Sense: 5'-GGAAGCCUUUAGAUGCCUCTT-3'
(siMTA2TR#2)	Antisense: 5'- GAGGCAUCUAAAGGCUUCCTT-3'
MTA2-homo-814	Sense: 5'-GCUGAUCAGGGCGAGAUUATT-3'
(siMTA2#1)	Antisense: 5'-UAAUCUCGCCCUGAUCAGCTT-3'
MTA2-homo-2364	Sense: 5'-GCACCAAUGAGCCUAUUGUTT-3'
(siMTA2#2)	Antisense: 5'- ACAAUAGGCUCAUUGGUGCTT-3'
MTA2-homo-1400	Sense: 5'-CCACCUACACUAAGCCAAATT-3'
(siMTA2#3)	Antisense: 5'-UUUGGCUUAGUGUAGGUGGTT-3'
ATF3-homo-444	Sense: 5'-GGUUUGCCAUCCAGAACAATT-3'
(siATF3#1)	Antisense: 5'-UUGUUCUGGAUGGCAAACCTT-3'
ATF3-homo-605	Sense: 5'-GCUGCAAAGUGCCGAAACATT-3'
(siATF3#2)	Antisense: 5'-UGUUUCGGCACUUUGCAGCTT-3'
ATF3-homo-811	Sense: 5'-CCUCUUUAUCCAACAGAUATT-3'
(siATF3#3)	Antisense: 5'-UAUCUGUUGGAUAAAGAGGTT-3'
HIF1α-homo-964	Sense: 5'-GCUGAUUUGUGAACCCAUUTT-3'
(siHIF1a#1)	Antisense: 5'-AAUGGGUUCACAAAUCAGCTT-3'
HIF1α-homo-1116	Sense: 5'-GCCGCUCAAUUUAUGAAUATT-3'
(siHIF1a#2)	Antisense: 5'-UAUUCAUAAAUUGAGCGGCTT-3'
HIF1α-homo-1556	Sense: 5'-GCCUCUUUGACAAACUUAATT-3'
(siHIF1a#3)	Antisense: 5'-UUAAGUUUGUCAAAGAGGCTT-3'

Supplementary Table S5. The sequence of siRNA.

LV-siMTA2TR#1, LV-siMTA2TR#2 Carrier Name: GV248 Component sequence: hU6-MCS-Ubiquitin-EGFP-IRES-puromycin Control number: CON077 Control insert sequence: TTCTCCGAACGTGTCACGT

Supplementary Figure Legends

Figure S1. MTA2TR facilitates the in vivo invasion and proliferation of SW1990 cells. (A-F) SW1990 cells transfected using lentiviruses encoding siMTA2TR#1 (LVsiMTA2TR#1), siMTA2TR#2 (LV-siMTA2TR#2) or siNC (LV-siNC) were transplanted subcutaneously into nude mice. (A) In Vivo Fluorescence Imaging demonstrated the subcutaneous tumor. (B) The weight of subcutaneous tumor was measured after 4 weeks when mice were sacrificed. (C) The volume of subcutaneous tumor was measured every 4 days. (D) MTA2TR expression was compared in the subcutaneous tumor form LV-siMTA2TR#1, LV-siMTA2TR#2 or LV-siNC group. (E) MTA2 mRNA expression was detected in the subcutaneous tumor form LVsiMTA2TR#1, LV-siMTA2TR#2 or LV-siNC group. (F) The MTA2 protein expression was demonstrated by IHC in the subcutaneous tumor form LV-siMTA2TR#1, LVsiMTA2TR#2 or LV-siNC group. (G-K) SW1990 cells transfected with LVsiMTA2TR#1, LV-siMTA2TR#2 or LV-siNC were transplanted via tail vein injection to observe tumor metastasis. (G) In Vivo Fluorescence Imaging indicated the metastasis of SW1990 cells in LV-siMTA2TR#1, LV-siMTA2TR#2 or LV-siNC group when mice were sacrificed after 4 weeks. Arrows indicate the invasion nodules. Scale bars, 1 cm. (H) Liver metastasis was measured with the indicated SW1990 cells. N=5 mice in each group. (I) The number of visible liver metastases per 5 sections in each nude mouse. (J, K) H&E images of liver and lung tissue isolated from LV-siMTA2TR#1, LVsiMTA2TR#2 or LV-siNC group. Arrows indicate the invasion nodules. Scale bars, 100 μm.

Figure S2. MTA2TR promotes proliferation and invasion of PC cells. (A) Stable overexpression of MTA2TR was detected in BxPC-3/SW1990 cells using qRT-PCR after transfection of control Vector (Vector) or MTA2TR overexpression vector (MTA2TR-OE). (**B**, **C**) The effect of MTA2TR overexpression on BxPC-3/SW1990 cells proliferations was measured by MTT and colony formation assay respectively. (**D**, **E**) The effect of MTA2TR overexpression on invasion and migration was assessed by transwell and wound healing assays in BxPC-3/SW1990 cells respectively.

Figure S3. MTA2TR predominantly functions through regulating MTA2. (A-C)

BxPC-3/SW1990 cells were transfected with control, siMTA2TR#1, siMTA2TR#2, or/and MTA2-OE. (**A**) The mRNA and protein levels of MTA2 were detected by qRT-PCR and western blot in transfected BxPC-3/SW1990 cells. (**B**) Cell proliferations were measured by MTT assay in transfected BxPC-3/SW1990 cells. (**C**) Assessment of invasion was measured by transwell assay in transfected BxPC-3/SW1990 cells. The right histogram represents relative cell number while the representative images are shown on the left panel. Average counts from five random microscopic fields.

Figure S4. MTA2TR predominantly functions by regulating MTA2. (A-C) BxPC-3/SW1990 cells were transfected with control, MTA2TR-OE, siMTA2#1, or/and siMTA2#2. (**A**) The mRNA and protein levels of MTA2 were detected by qRT-PCR and western blot in transfected BxPC-3/SW1990 cells. (**B**) Cell proliferations were measured by MTT assay in transfected BxPC-3/SW1990 cells. (**C**) Assessment of invasion was measured by transwell assay in transfected BxPC-3/SW1990 cells. The right histogram represents relative cell number while the representative images are shown on the left panel. Average counts from five random microscopic fields.

Figure S5. MTA2TR activates transcription of MTA2 by recruiting ATF3 to the MTA2 promoter. (A) The efficiency of ATF3 knockdown on BxPC-3/SW1990 cells was evaluated by qRT-PCR and western blot. (**B**) The effect of ATF3 overexpression on ATF3 expression of BxPC-3/SW1990 cells was evaluated by qRT-PCR and western blot. (**C, D**) BxPC-3 cells were transfected with control, siMTA2TR#1 or and ATF3-OE. (**C**) The binding between ATF3 and MTA2 promoter in the transfected BxPC-3 cells was evaluated by ChIP assay. (**D**) The transfected BxPC-3 cells were cotransfected with vector containing WT or MUT of MTA2 promoter as reporter cells. The promoter activity of these reporter cells was analyzed by luciferase reporter assay. (**E**) BxPC-3/SW1990 cells were transfected with control, siMTA2TR#1, siMTA2TR#2 or and ATF3-OE. The mRNA and protein level of MTA2 was detected in transfected BxPC-3/SW1990 cells.

Figure S6. MTA2TR predominantly functions through its association with MTA2 by recruiting ATF3. (A, B) BxPC-3/SW1990 cells were transfected with control, siMTA2TR#1, siMTA2TR#2 or and ATF3-OE. (A) Cell proliferations were measured by MTT assay. (**B**) Assessment of invasion was measured by transwell assay. The right histogram represents relative cell number while the representative images are shown on the left panel. Average counts from five random microscopic fields.

Figure S7. MTA2TR predominantly functions through regulating MTA2 by recruiting ATF3. (A, B) BxPC-3/SW1990 cells were transfected with control, MTA2TR-OE, siATF3#1 or and siATF3#2. (A) Cell proliferations were measured by MTT assay. (B) Assessment of invasion was measured by transwell assay. The right histogram represents relative cell number while the representative images are shown on the left panel. Average counts from five random microscopic fields.

Figure S8. Hypoxia-Induced MTA2TR increased the recruitment of ATF3 on the MTA2 promoter. (**A**) The binding between MTA2TR and ATF3 was verified by RIP assay with anti-ATF3 antibody in BxPC-3/SW1990 cells under normal and hypoxia conditions, and the co-precipitated transcript were determined using qRT-PCR. (**B**) Combined immunofluorescence of ATF3 protein (green) and RNA-FISH analysis of MTA2TR (red) in BxPC-3 cells under normoxia and hypoxia environments. Scale bars, 20 μm. (**C**) The effect of hypoxia on binding of ATF3 on MTA2 promoter was inspected by ChIP assay in BxPC-3/SW1990 cells.

Figure S9. Hypoxia-Induced MTA2TR stabilizes HIF-1 α by promoting deacetylation of HIF-1 α . (A) The mRNA and protein level of HIF-1 α was detected in MTA2TR-overexpression BxPC-3/SW1990 cells by qRT-PCR and western blot. (B) The effect of MTA2TR overexpression on stabilization of HIF-1 α was measured in BxPC-3/SW1990 cells treated with cycloheximide under hypoxia for the indicated periods of time. (C) The expression of HIF-1 α in the MTA2TR overexpression BxPC-3/cells was detected under hypoxia with or without MG132 treatment. (D, E) The acetylation of HIF-1 α and the binding between MTA2 and HIF-1 α in the MTA2TR-overexpression BxPC-3/SW1990 cells were analyzed in the cell lysates under hypoxia, which were immunoprecipitated with anti-HIF-1 α or anti-MTA2 antibody. (F) The acetylation of HIF-1 α and the binding between MTA2 and HIF-1 α in the BxPC-3/SW1990 cells transfected with MTA2TR-OE or/and siMTA2 under hypoxia were analyzed by immunoprecipitation assay with anti-HIF-1 α or anti-MTA2 antibody. (G)

The mRNA level of VEGFa, VEGFb, LOX, LOXL2, PLOD2 and TUBA1 was detected in MTA2TR-overexpression BxPC-3/SW1990 cells under hypoxia by qRT-PCR.

Figure S10. Hypoxia-Induced MTA2TR promote proliferation and invasion of BxPC-3/SW1990 cells. (A, B) BxPC-3/SW1990 cells were transfected with siNC, siMTA2TR#1 or siMTA2TR#2 under normal or hypoxia condition. (A) Cell proliferations were measured by MTT assay. (B) Representative images (upper) and number (below) of invasive cells. Average counts from five random microscopic fields.

Figure S4

VEĠFa VEĠFb LOX LOXL2 PLOD2 TUBA1A

Supplementary Methods

Cell proliferation assay

Cells were plated in 96-well plates at 2000 cells per well and incubated for 1-5 days. MTT solution (0.5 mg/mL) was then added at 37 $^{\circ}$ C for 4 h and the media was replaced by 150 µl DMSO. Absorbance at 570 nm was then assessed by microplate reader. There were 5 replicates per group, and the experiment was conducted independently three times.

Plate clone formation assay

Stable transfected cells were seeded in 6-well plates at a density of 1000 cells per well, then cultured for 8 days. Cells were washed with PBS, fixed with 4% polyformaldehyde for 20 min, and followed by 1% Crystal Violet Staining Solution for 20 min after discarding solution. Finally, the number of colonies in each well were counted under the microscope.

Invasion assay

Matrigel (BD Biosciences) was used to coat the surface of Transwell migration chambers (Corning, Shanghai, China). Next, 5×10^4 cells were added into the upper chamber in a final volume of 100µl. In the lower chamber, 30% FBS media was added to serve as a chemoattractant. After incubated with 24 h, cells on the membrane of the lower chamber were fixed using 4% paraformaldehyde, stained using 0.1% crystal violet, and then a total of five random microscopic fields were counted. This assay was conducted in triplicate.

RT-PCR and qRT-PCR

Trizol (Invitrogen, USA) was used for all RNA isolation. Reverse transcriptions were performed by PrimeScriptTM RT reagent Kit (Takara, China) based on provided directions. RT-PCR reaction procedures were as follows: 37 °C for 15 min; 85 °C for 5 s; 4 °C for 10 min. SYBR®Premix Ex TaqTM (TaKaRa) was used for qRT-PCR based on provided directions with a StepOne-Plus System (Applied Biosystems). β actin and GAPDH were served as loading control. Each sample was done in triplicate. Primer sequences are given in Table S4.

Transfection

siRNAs targeting MTA2TR, MTA2, ATF3, HIF-1 α , as well as appropriate negative controls came from RiboBio (Guangzhou, China). MTA2TR overexpression vector, ATF3 overexpression vector and empty vector came from GeneChem (Shanghai, China). MTA2 overexpression vector and empty vector came from Vigene Biosciences (Shandong, China). For stable transfection, MTA2TR siRNA was constructed into lentiviral vector, with empty vector as a negative control. Lipofectamine 2000 (Invitrogen, USA) was used for cell transfection.