An all-in-one homogeneous DNA walking nanomachine and its application for intracellular analysis of miRNA

Muren Hu¹, Dongsheng Mao², Xiaohao Liu², Lingjie Ren², Mengru Zhou², Xiaoxia Chen^{2,3,*}, and Xiaoli Zhu^{2,*}

¹ Department of General Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, P. R. China

²Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, P. R. China

³State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200032, P. R. China *Corresponding authors: accalia@sjtu.edu.cn; xiaolizhu@shu.edu.cn

Figure S1 FRET induced by the hybridization of HP-1 (green) and HP-2 (red). (A) Fluorescence excitation and emission spectra of FITC. (B) Fluorescence excitation and emission spectra of TAMRA. (C) The occurrence of FRET of HP-1/HP-2 after annealing.

Figure S2 Standard linear calibration curves of (A) FITC-labeled HP-1 (Ex: 494 nm; Em: 517 nm) and (B) TAMRA-labeled HP-2 (Ex: 558 nm; Em: 583 nm). The intersection points of the dashed lines show the relative fluorescence intensities of HP-1 and HP-2 released from the AuNPs using DTT (10 mM) treatment.

Figure S3 Fluorescence intensity ratio (F_T/F_F) of the nanomachine in the presence of PBS, DMEM with 10% FBS, RPMI-1640 with 10% FBS, DNase I, cell lysate and miR-21.

Figure S4 (A) Scheme showing the nanomachine treated by target miR-21 or nontarget miRNAs (miR-16, miR-26a, and miR-214). (B) Fluorescence intensity ratio (F_T/F_F) of the nanomachine in the presence of PBS, miR-16, miR-26a, miR-214, and miR-21.

Figure S5 Cell viability determined by MTT cytotoxicity assays. MCF-7 cells were incubated with nanomachine (6 nM) for 0, 3, 6, 12, 18 and 24 h.

Figure S6 Confocal images of MCF-7 cells incubated with the nanomachine (6 nM) at different time points. Scale bar: $20 \ \mu m$.

Figure S7 Confocal images of MCF-7 cells treated with LysoTracker blue and nanomachine for 1 h and 3 h, respectively. Scale bar: 20 µm.

Figure S8 The relative expression levels of miR-21 in MCF-7, HeLa and L02 by qRT-PCR.

Figure S9 Confocal images of miR-21 in HeLa cells using the DNA walking nanomachine after transfecting the cells with NC (negative control), miR-21 mimic or inhibitor. Scale bar: 20 µm.

Table S1. Sequences	of oligonucleotides.
---------------------	----------------------

Name	Sequence (5' to 3')	
LS-1(4 nt)	CAGACTGATGTTGATTT-SH	
LS-1(6 nt)	AGACTGATGTTGATTT-SH	
LS-1(8 nt)	GACTGATGTTGATTT-SH	
LS-2	CTTTGGGGTAGCTTTTT-SH	
HP-1(4 nt)	TCAACATCAGTCTG <u>ATAA</u> GCTACCCCTTTGGGGGTA GC-FITC	
HP-1 (6 nt)	TCAACATCAGTCT <u>GATAAG</u> CTACCCCTTTGGGGGTA G-FITC	
HP-1 (8 nt)	TCAACATCAGTC <u>TGATAAGC</u> TACCCCTTTGGGGGTA -FITC	
HP-2	TAMRA-GCTACCCCAAAGGGGGTAGCTTATCAGACT GATAGTCTGATAA	
Molecular beacon	FITC-TCAACATCAGTCTGATAAGCTAAAAAAAAAA GATGTTGA-BHQ1	
miR-21	UAGCUUAUCAGACUGAUGUUGA	
miR-21 mimic	UAGCUUAUCAGACUGAUGUUGA	
miR-21 inhibitor	-21 inhibitor TCA ACATCAGTCTGATAAGCTA	
miR-21 forward	GTGCAGGGTCCGAGGT	
miR-21 reverse	GCCGCTAGCTTATCAGACTGATGT	
U6 forward	CTCGCTTCGGCAGCACA	
U6 reverse	AACGCTTCACGAATTTGCGT	
miR-16	UAGCAGCACGUAAAUAUUGGCG	
miR-26a	UUCAAGUAAUCCAGGAUAGGCU	
miR-214	ACAGCAGGCACAGACAGGCAGU	

Table S2. Comparison of the assay performance of the nanomachine with previously reported methods for intracellular miRNA detection.

	Method	LOD	Readout	Ref.		
1	Au Nanoflare Probe	0.68 nM	Fluorescence	1		
2	Isothermal Circular Strand Displacement	129.4 pM	Fluorescence	2		
	Polymerization (B-ICSDP)					
3	Hairpin-Fuelled Catalytic Nanobeacons	67 pM	Fluorescence	3		
4	Single-Layer Perfluorinated Tungsten	0.75 nM	Fluorescence	4		
	Diselenide Nanoplatform					
5	DNAzyme Amplification Strategy	44 pM	Fluorescence	5		
6	HCR System	680 pM	Fluorescence	6		
7	DNA Walking Nanomachine	26 pM	Fluorescence	This work		

References

- Zhai LY, Li MX, Pan WL, Chen Y, Li MM, Pang JX, et al. In Situ Detection of Plasma Exosomal MicroRNA-1246 for Breast Cancer Diagnostics by a Au Nanoflare Probe. ACS Appl Mater Inter. 2018; 10(46): 39478-39486.
- Yang Z, Zhang S, Zhao H, Niu H, Wu ZS, Chang HT. Branched DNA Junction-Enhanced Isothermal Circular Strand Displacement Polymerization for Intracellular Imaging of MicroRNAs. Anal Chem. 2018; 90: 13891-13899.
- 3. Wang J, Huang J, Quan K, Li J, Wu Y, Wei Q, et al. Hairpin-Fuelled Catalytic Nanobeacons for Amplified MicroRNA Imaging in Live Cells. Chem Commun. 2018; 54(73): 10336-10339.
- Song Y, Yan X, Ostermeyer G, Li S, Qu L, Du D, et al. Direct Cytosolic MicroRNA Detection Using Single-Layer Perfluorinated Tungsten Diselenide Nanoplatform. Anal Chem. 2018; 90(17): 10369-10376.
- Li P, Wei M, Zhang F, Su J, Wei W, Zhang Y, et al. Novel Fluorescence Switch for MicroRNA Imaging in Living Cells. ACS Appl Mater Inter. 2018; 10(50): 43405-43410.
- Yang F, Cheng Y, Cao Y, Dong H, Lu H, Zhang K, et al. Sensitively Distinguishing Intracellular Precursor and Mature MicroRNA Abundance. Chem Sci. 2018; 10(6): 1709-1715.