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Supporting Figure S1. XPS analysis: (a) XPS spectra of the as-prepared MnO2 nanoparticles. (b) 

Showing the high resolution Mn(2p) XPS spectra of Mn
4+

 in MnO2. 

 

 



 

Supporting Figure S2. Fluorescence emission spectra of Mn@CaCO3/ICG@siRNA at 710 nm 

excitation. Inset: fluorescence images of Mn@CaCO3/ICG@siRNA (excitation=710 nm). 

 



 

Supporting Figure S3. Fluorescence emission spectra of Mn@CaCO3/ICG@siRNA at 375 nm 

excitation. Inset: fluorescence images of Mn@CaCO3/ICG@siRNA (excitation=375 nm). 

 



 

Supporting Figure S4. Polyacrylamide gel electrophoresis assay for the optimunim binding ratio 

of Mn@CaCO3/ICG: FAM-siRNA. Mn@CaCO3/ICG and free FAM-siRNA were mixed at the 

different Mn
4+ 

/siRNA ratio, and analysed by polyacrylamide gel electrophoresis.  

 

 



 

Supporting Figure S5. TEM images of Mn@CaCO3/ICG@siRNA after incubation in DI water 

containing 50 μM H2O2 at pH values of 6.5 for various periods of time (0, 1, 3, 5 h). 

 

 

 

 



 

Supporting Figure S6. The release profiles of the calcium ions from Mn@CaCO3/ICG@siRNA 

in the presence or absence of 50 μM H2O2 with different pH value (6.5, 7.4). 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S7. The digital photos of Mn@CaCO3/ICG@siRNA dispersed in various 

aqueous media (from left to right: DI water, PBS, saline and saline containing 10% FBS) for 15 

day. 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S8. The size stability study of Mn@CaCO3/ICG@siRNA with time in saline or 

DMEM containing 10% FBS. The DLS result showed that no obvious size changes of the 

nanoprobes incubation in saline or DMEM with 10% FBS for 15 day, indicating the nanoprobes 

are stable in these media.  

 

 

 

 

 

 

 



 

Supporting Figure S9. Digital photo of Mn@CaCO3/ICG@siRNA incubated with H2O2 plus HCl, 

HCl and PBS for 2 min, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S10. The effects of free ICG, MnO2 and Mn@CaCO3/ICG@siRNA on LLC 

cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S11. Penetration depth of free ICG and Mn@CaCO3/ICG@siRNA in the 3D 

multicellular tumor spheroid (MCTS) model of lewis cells. Scale bars are 200 μm. 

 

 

 



 

Supporting Figure S12. The expression of PD-L1 on the surface of Lewis cells. 

 

 

 

 

 



 

Supporting Figure S13. The expression of PD-L1 on the surface of Lewis cells before and after 

siRNA transfection by with nanoplatform (left: before, right: after). 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S14. The cell viability of LLC cells incubated with with PBS, MnO2, free ICG 

and Mn@CaCO3/ICG@siRNA respectively for 12 h after the irradiation of 808 nm laser (6 min, 

0.8 W/cm
2
), which was determined by CCK-8 assay.   

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S15. In vitro T1-weighted MR imaging. (a) The linear fitting of the inverse T1 

of Mn@CaCO3/ICG@siRNA after 12 h incubation in different buffer solution at a series of Mn
4+ 

concentration. (b) The T1-MR images of Mn@CaCO3/ICG@siRNA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Suopporting Figure S16. The blood circulation of nanoplatform analyzed by measuring Mn 

content by ICP-MS. 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S17. Flow cytometric analysis of DC cells drained from lymph nodes 

surrounding the tumor in the LLC tumor-bearing mice 4 days after laser irradiation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S18. Representative flow cytometry date of DC cells drained from lymph nodes. 
n=5 per group, mean±s.d., ANOVA with Tukey’s post-test, *p < 0.05, **p < 0.001. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S19. The level of IL-12 in the groups post various treatments. (n=5 per group, 

mean±s.d., ANOVA with Tukey’s post-test, *p < 0.01, **p < 0.001). Compared with the saline 

group. 

 

 

 

 

 

 



 

Supporting Figure S20. The level of IL-18 in the groups post various treatments. (n=5 per group, 

mean±s.d., ANOVA with Tukey’s post-test, *p < 0.01, **p < 0.001). Compared with the saline 

group. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S21. Flow cytometric analysis of T-reg cells drained from the tumor tissue in 

the LLC tumor-bearing mice 4 days after laser irradiation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S22. H&E stained organs (heart, liver, lung, spleen and kidney) slices from 

each groups collected 14 day after i.v injection of saline, Mn@CaCO3/ICG and 

Mn@CaCO3/ICG@siRNA. All scale bars are 100 μm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supporting Figure S23. Western blot of PD-L1. Total protein harvested from normal tumor tissue 

was used as control. 

 


