Supplementary Information

Titles: Normalization of Tumor Vasculature by Oxygen Microbubbles with Ultrasound

Authors: Yi-Ju Ho¹, Shu-Wei Chu¹, En-Chi Liao², Ching-Hsiang Fan¹, Hong-Lin Chan², Kuo-Chen Wei³, and Chih-Kuang Yeh^{1*}

¹Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.

²Institute of Bioinformatics and Structural Biology & Department of Medical Sciences, National Tsing Hua University, Hsinchu, Taiwan.

³Department of Neurosurgery, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

*Corresponding authors at:

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan. Tel: +886-3-571-5131 ext. 34240; Fax: +886-3-571-8649 E-mail address: ckyeh@mx.nthu.edu.tw

This file includes:

Figure S1 to S5

Figure S1. Physical and acoustic characteristics of C_3F_8 -MBs and O_2 -MBs. (A) The size distribution of O_2 -MBs with various volume ratios of C_3F_8 and O_2 . The optimal $C_3F_8:O_2$ volume ratio for O_2 -MBs fabrication was 7:5. (B) The contrast enhancement of US images and pO_2 levels were measured to evaluate the stability of MBs *in vitro*. The contrast enhancement and pO_2 levels revealed no significant difference after 60 min at 37 °C in the C_3F_8 -MBs and O_2 -MBs groups. (C) The MBs destruction threshold under 2-MHz HIFU sonication was analyzed to determine the optimal acoustic pressure for local oxygen release. The MBs destruction at acoustic pressure of 2 MPa was 100%. (D) The ICD was determined to evaluate the possible bio-effects during MBs destruction. The ICD is directly proportional to the acoustic pressure. The physical and acoustic characteristics between C_3F_8 -MBs and O_2 -MBs were not significantly different. Quantitative data are presented as mean \pm standard deviation and were analyzed by one-way ANOVA.

Figure S2. *In vitro* pO_2 levels of $1 \times 10^7 O_2$ -MBs in the PBS, degas PBS, and O_2 -PBS. The PBS was degassed for 3 min and infused O_2 for 1 min to prepare O_2 -PBS. During O_2 infusion, the needle was immersed into PBS to observe the bubble production. The initial pO_2 was 138 ± 9 , 58 ± 6 , and 169 ± 42 mmHg in the PBS, degas PBS, and O_2 -PBS, respectively. In the degas PBS group, the pO_2 was significantly increased from 75 ± 11 to 92 ± 9 at 0 to 10 min due to the oxygen release from O_2 -MBs. The results showed no significant difference over time in the PBS and O_2 -PBS groups. The legends of w/o and w/ mean without O_2 -MBs and with O_2 -MBs, respectively.

Figure S3. (A) The experimental setup of intratumoral pO₂ detection during O₂-MBs treatment. The US imaging revealed the inserted location of a fiberoptic pO₂ probe at tumor center. (B) The intratumoral pO₂ levels were 18 ± 2 to 18 ± 2 , 15 ± 5 to 16 ± 5 , and 16 ± 4 to 22 ± 6 mmHg at 0 to 60 min in the control, C₃F₈-MBs+US, and O₂-MBs+US groups, respectively. Although the results showed increment of intratumoral pO₂ levels after O₂-MBs treatment, there was no significant difference between each group due to the different initial pO₂ levels.

Figure S4. Histological images stained by H&E revealed intact tumor structure without hemorrhage and necrosis after O₂-MBs treatment.

Figure S5. The variability in protein expression after O₂-MBs treatment. The concentrations of (A) VEGF and (B) TGF- β were traced over time by *in vivo* microdialysis and measured by ELISA assay. Bars are shown as means with error bars depicting the standard deviation. Data were analyzed by one-way ANOVA (* *p*<0.05; † *p*<0.01).