The hepatocyte-specifically expressed Inc-HSER alleviates hepatic fibrosis by inhibiting hepatocyte apoptosis and epithelial-mesenchymal transition

Kun Zhang^{1, #}, Mengxia Zhang^{1, #}, Qingbin Yao^{1, #}, Xiaohui Han^{1, #}, Yanmian Zhao¹, Lina Zheng¹, Guantong Li², Qi Liu¹, Yanan Chang³, Peijun Zhang⁴, Hongmei Cui¹, Zhemin Shi¹, Ting Chen¹, Zhi Yao⁵, Tao Han², Wei Hong^{1, *}

¹Department of Histology and Embryology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China

²The Third Central Clinical College of Tianjin Medical University, Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital, Tianjin Key Laboratory of Artificial Cells, Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin, China

³Department of Pathology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China

⁴Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China

⁵Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of Ministry of Education, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China

[#]These authors contributed equally to this work.

Corresponding authors: Wei Hong, Department of Histology and Embryology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China. E-mail: <u>hongwei@tmu.edu.cn</u>.

Supplementary Information

Supplementary Figures

Fig. S1, related to Fig. 1. (A) Agarose gel electrophoresis of PCR products from the 5'-RACE procedure and 3'-RACE procedure. The molecular weight markers (base pairs) are indicated on the side. The major PCR product is marked with an arrow. Nucleotide sequence of the full-length lnc-Hser was confirmed by RACE in mouse livers. (B, C) RNA was extracted from the nuclei or cytoplasm of primary HCs and AML12 cells. 1 μ g of RNA was used for the qRT-PCR analysis of *Inc-Hser, Malat1* (nuclear retained), and *β-actin* mRNAs (cytoplasm retained). The data are expressed as the mean ± SD for at least triplicate experiments.

Fig. S2, **related to Fig. 2.** Mice were treated with oil in combination with injection of lenti-NC (Negative Control, n = 10), or CCl₄ in combination with injection of lenti-NC (NC + CCl₄, n = 10), or oil in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA, n = 10), or CCl₄ in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA + CCl₄, n = 10). (A) The expression of *Inc-Hser* in livers of each group was examined by qRT-PCR. (B) Liver fibrosis was evaluated by IHC for TGFβ and TUNEL staining; scale bar = 400 µm for 10× and 100 µm for 40×. (C) Quantification of TUNEL staining. (D) The expression and location of cleaved Caspase3 and N-Cadherin were determined by IHC (Frozen); scale bar = 400 µm; (E) The

protein level of total and cleaved Caspase3, BAX, N-Cadherin, E-Cadherin, β -Catenin, Vimentin and SNAIL1 was determined by western blot. GAPDH was used as an internal control. (F) The mRNA level of the apoptosis-related, pro-inflammation and EMT-related genes was determined by qRT-PCR. The data are expressed as the mean ± SD for at least triplicate experiments. **p*<0.05 stands for vs NC. #*p*<0.05 stands for vs NC + CCl₄.

Fig. S3, **related to Fig. 3.** (A-D) AML12 cells were infected with LV-Inc-Hser for 72 h and further treated with 10 ng/ml TGFβ for additional 24 h. The RNA level of *Inc-Hser*, pro-fibrogenic genes (A), apoptosis and proliferation -related genes (B) and EMT-related genes (C) was detected by qRT-PCR. The protein level of α-SMA, Col1α1, MMP2, total and cleaved Caspase3, BAX, N-Cadherin, E-cadherin, Vimentin, β-Catenin and SNAIL1 was detected by western blot. GAPDH was used as an internal control (D). (E) AML12 cells were transfected with pcDNA3.1-Inc-Hser or pcDNA3.1 for 48 h and further treated with 10 ng/ml TGFβ for additional 24 h. Cell apoptosis was determined by FACS analysis. The data are expressed as the mean \pm SD for at least triplicate experiments. **p*<0.05 stands for vs LV-Control or pcDNA3.1. #*p*<0.05 stands for vs LV-Control + TGFβ or pcDNA3.1 + TGFβ.

Fig. S4, related to Fig. 3. (A-D) The expression of Inc-Hser, pro-fibrogenic genes (A), apoptosis and proliferation -related genes (B) and EMT-related genes (C) was detected in AML12 cells infected with lenti-Inc-Hser-shRNA or lenti-NC by qRT-PCR (A-C) and western blot. GAPDH was used as an internal control (D). (E) AML12 cells were transfected with siRNA-Inc-Hser or si-NC for 36 h, the expression and location of cleaved Caspase3, N-Cadherin and Ki67 was determined by confocal microscopy. DAPI stained nuclei blue; scale bar = 50 μ m. The data are expressed as the mean ± SD for at least triplicate experiments, **p*<0.05.

Fig. S5, related to Fig. 3. The expression of Inc-Hser was stably knocked down by the CRISPR/Cas9 system with guide RNA pairs in AML12 cells. (A-E) The expression of Inc-Hser, pro-fibrogenic genes (A), apoptosis and proliferation -related genes (B) and EMT-related genes (C) was detected in Inc-Hser-silenced AML12 cells by qRT-PCR (A-C) and western blot. GAPDH was used as an internal control (D). The expression and location of cleaved Caspase3, N-Cadherin and Ki67 was determined by confocal microscopy. DAPI stained nuclei blue; scale bar = 50 μ m (E). The data are expressed as the mean \pm SD for at least triplicate experiments, **p*<0.05.

Fig. S6, related to Fig. 3, 4. (A) Mice were treated with oil in combination with injection of lenti-NC (Negative Control, n = 10), or CCl₄ in combination with injection of lenti-NC (NC + CCl₄, n = 10), or oil in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA, n = 10), or CCl₄ in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA + CCl₄, n = 10). qRT-PCR analysis of *Inc-Hser*, apoptosis and proliferation -related genes and EMT-related genes level in the primary HCs isolated from mice in each group. (B) The level of TGFβ in supernatant from Control, Inc-Hser-silenced and Inc-Hser-over-expressed AML12 and primary HCs was detected by ELISA. The data are expressed as the mean ± SD for at least triplicate experiments. **p*<0.05 stands for vs NC or Control-gRNA or LV-Control. #*p*<0.05 stands for vs NC + CCl₄.

Fig. S7, related to Fig. 5. (A, B) AML12 cells were infected with LV-Inc-Hser for 72 h and further treated with 10 ng/ml TGFβ for additional 24 h. The mRNA level of *C5, C5ar1* and *Cntrl* was detected by qRT-PCR (A). The protein level of C5AR1 was detected by western blot. GAPDH was used as an internal control (B). (C-F) The expression of C5, C5AR1 and CNTRL was detected in Inc-Hser-silenced AML12 cells by qRT-PCR (C, E) and western blot. GAPDH was used as an internal control (D, F). (G) Mice were treated with oil in combination with injection of lenti-NC (Negative Control, n = 10), or CCl₄ in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA, n = 10), or CCl₄ in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA + CCl₄, n = 10). The protein level of C5AR1 in livers of mice in each group was detected by western blot. GAPDH was used as an internal control (B). The data are expressed as the mean ± SD for at least triplicate experiments. **p*<0.05 stands for vs LV-Control + TGFβ.

Fig. S8, **related to Fig. 5.** (A, B) Primary HCs were infected with LV-Inc-Hser for 72 h and further treated with 10 ng/ml TGFβ for additional 24 h. The mRNA level of *Mst1*, *Lats1*, *Yap*, *Taz* and *Tead4* was detected by qRT-PCR (A). The protein level of pMST, MST, pLATS, LATS, pYAP and YAP/TAZ was detected by western blot (B). GAPDH was used as an internal control. (C) The expression of *Mst1*, *Lats1*, *Yap*, *Taz* and *Tead4* was detected in primary HCs infected with lenti-Inc-Hser-shRNA or lenti-NC by qRT-PCR. (D) The protein level of pMST, MST, pLATS, LATS, pYAP and YAP/TAZ was detected in primary HCs infected with lenti-Inc-Hser-shRNA or lenti-NC by qRT-PCR. (D) The protein level of pMST, MST, pLATS, LATS, pYAP and YAP/TAZ was detected in primary HCs infected with lenti-Inc-Hser-shRNA or lenti-NC by western blot. GAPDH was used as an internal control. The data are expressed as the mean ± SD for at least triplicate experiments. **p*<0.05 stands for vs LV-Control or NC. #*p*<0.05 stands for vs LV-Control + TGFβ.

Fig. S9, **related to Fig. 5.** (A, B) AML12 cells were infected with LV-Inc-Hser for 72 h and further treated with 10 ng/ml TGFβ for additional 24 h. The mRNA level of *Mst1*, *Lats1*, *Yap*, *Taz* and *Tead4* was detected by qRT-PCR (A). The protein level of pMST, MST, pLATS, LATS, pYAP and YAP/TAZ was detected by western blot. GAPDH was used as an internal control (B). (C, D) The mRNA level of *Mst1*, *Lats1*, *Yap*, *Taz* and *Tead4* was detected in Inc-Hser-silenced AML12 cells by qRT-PCR. (E, F) The protein level of pMST, MST, pLATS, LATS, pYAP and YAP/TAZ was detected in Inc-Hser-silenced AML12 cells by qRT-PCR. (E, F) The protein level of pMST, MST, pLATS, LATS, pYAP and YAP/TAZ was detected in Inc-Hser-silenced AML12 cells by western blot. GAPDH was used as an internal control. The data are expressed as the mean ± SD for at least triplicate experiments. **p*<0.05 stands for vs LV-Control or NC or Control-gRNA. #*p*<0.05 stands for vs LV-Control + TGFβ.

Fig. S10, related to Fig. 5. Mice were treated with oil in combination with injection of lenti-NC (Negative Control, n = 10), or CCl₄ in combination with injection of lenti-NC (NC + CCl₄, n = 10), or oil in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA, n = 10), or CCl₄ in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA + CCl₄, n = 10). (A) The mRNA level of *Mst1*, *Lats1*, *Yap*, *Taz* and *Tead4* was detected in livers by qRT-PCR. (B) The protein level of pMST, MST, pLATS, LATS, pYAP and YAP/TAZ was detected in livers by western blot. GAPDH was used as an internal control. (C) The mRNA level of *Mst1*, *Lats1*, *Yap*, *Taz* and *Tead4* was detected in the primary HCs isolated from mice in each group, by qRT-PCR. (D) The expression of Inc-Hser was stably knocked down by the CRISPR/Cas9 system with guide RNA pairs in AML12 cells. PMX205, a specific inhibitor of C5AR1, was added in Inc-Hser-silenced AML12 cells for 24 h. Cell apoptosis was determined by FACS analysis. The data are expressed as the mean \pm SD for at least triplicate experiments. **p*<0.05 stands for vs NC or Control-gRNA. #*p*<0.05 stands for vs NC + CCl₄ or Inc-Hser-gRNAs.

Fig. S11, related to Fig. 6. (A, B) AML12 cells were infected with LV-Inc-Hser for 72 h and further treated with TGFβ for additional 24 h. The expression of Notch2, Notch3, Jagged1 and Hes1 was detected by qRT-PCR (A) and western blot. GAPDH was used as an internal control (B). (C, D) The expression of Notch2, Notch3, Jagged1 and Hes1 in AML12 cells infected with lenti-Inc-Hser-shRNA or lenti-NC was detected by qRT-PCR (C) and western blot. GAPDH was used as an internal control (D). (E, F) The expression of Notch2, Notch3, Jagged1 and Hes1 in Inc-Hser-silenced AML12 cells was detected by qRT-PCR (E) and western blot. GAPDH was used as an internal control (P). (E, F) The expression of Notch2, Notch3, Jagged1 and Hes1 in Inc-Hser-silenced AML12 cells was detected by qRT-PCR (E) and western blot. GAPDH was used as an internal control (F). The data are expressed as the mean ± SD for at least triplicate experiments. **p*<0.05 stands for vs LV-Control or NC or Control gRNA. #*p*<0.05 stands for vs LV-Control + TGFβ.

Fig. S12, related to Fig. 6. Mice were treated with oil in combination with injection of lenti-NC (Negative Control, n = 10), or CCl₄ in combination with injection of lenti-NC (NC + CCl₄, n = 10), or oil in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA, n = 10), or CCl₄ in combination with injection of lenti-Inc-Hser-shRNA (Inc-Hser-shRNA + CCl₄, n = 10). (A) The mRNA level of *Notch2, Notch3, Jagged1* and *Hes1* was detected in livers by qRT-PCR. (B) The protein level of Notch2, Notch3 and Hes1 was detected in livers by western blot. GAPDH was used as an internal control. The data are expressed as the mean \pm SD for at least triplicate experiments. **p*<0.05 stands for vs NC. #*p*<0.05 stands for vs NC + CCl₄.

Fig. S13, related to Fig. 7. Inc-HSER1/2 ameliorates TNF-α-induced apoptosis and inflammation of L02 cells. (A-D) L02 cells were transfected with pcDNA3.1, pcDNA3.1-Inc-HSER1 and pcDNA3.1-Inc-HSER2 for 48 h and further treated with TNF-α for additional 24 h. (A) The RNA level of *Inc-HSER1, Inc-HSER2,* pro-inflammation genes, apoptosis-related genes was detected by qRT-PCR. (B) The protein level of α-SMA, Col1α1, MMP2, total and cleaved Caspase3 and BAX was detected by western blot. GAPDH was used as an internal control. (C, D) The expression of EMT-related genes was detected by qRT-PCR (C) and western blot (D). GAPDH was used as an internal control. The data are expressed as the mean \pm SD for at least triplicate experiments. **p*<0.05 stands for vs pcDNA3.1 + TNF-α.

Fig. S14. Inc-Hser interacts with PRC2. (A, B) qRT-PCR detection of Inc-Hser and β-Actin retrieved by SUZ12-specific antibody compared with IgG in the RIP assay with AML12 cells (A) and the single cell suspensions isolated from mouse liver (B). (C) AML12 cells were infected with LV-Inc-Hser or LV-Control, and ChIP analyses were performed on indicated genes promoter regions using anti-SUZ12 antibody. (D) AML12 cells were treated with or without TGFβ, and ChIP analyses were performed on the promoter regions of Inc-Hser using anti-SUZ12 antibody. Enrichment was shown relative to input. The data are expressed as the mean ± SD for at least triplicate experiments, **p*<0.05.

Supplementary Tables

Table S1. Primers and Oligonucleotides

qRT-PCR primers for analysis of transcript levels

Gene symbol	Forward 5' - 3'	Reverse 5 '- 3'	
Mouse Inc-Hser	GCTCTTTCATGGGAGCAACT	TCATTGCCTTTGGCTTTCTC	
Mouse Inc-Hser	GCCAAAGGCAATGAGACTCC	CAAATGCCTCAGTATGGCCG	
Mouse β-Actin	ATGCCACAGGATTCCATACCCAAGA	CTCTAGACTTCGAGCAGGAGATGG	
Mouse Gapdh	GGCATGGACTGTGGTCATGAG	TGCACCACCAACTGCTTAGC	
Mouse Malat1	AAATTGATGGCCTTTTCTGG	AGCTGGATCCTTGAGGTCAC	
Mouse Col1α1	ATCGGTCATGCTCTCTCCAAACCA	ACTGCAACATGGAGACAGGTCAGA	
Mouse Col1α2	CCTTTGTCAGAATACTGAGCAGC	GTAACTTCGTGCCTAGCAACA	
Mouse Col3α1	TGCTCCAGTTAGCCCTGCAA	GGTCCTGCAGGCAACAGTGGTTC	
Mouse Col4a5	CTCCCTTACCGCCCTTTTCTC	AGGCGAAATGGGTATGATGGG	
Mouse Acta2	TCGGATACTTCAGCGTCAGGA	GTCCCAGACATCAGGGAGTAA	
Mouse Pcna	TTTGAGGCACGCCTGATCC	GGAGACGTGAGACGAGTCCAT	
Mouse Ki67	CATCCATCAGCCGGAGTCA	TGTTTCGCAACTTTCGTTTGTG	
Mouse Ctgf	ATCCAGGCAAGTGCATTGGTA	GGGCCTCTTCTGCGATTTC	
Mouse Bax	TTGCTGATGGCAACTTCAAC	GATCAGCTCGGGCACTTTAG	
Mouse Bad	AGAGTATGTTCCAGATCCCAG	GTCCTCGAAAAGGGCTAAGC	
Mouse Bcl2	GCTGGGATGCCTTTGTGGAACT	CAGAGACAGCCAGGAGAAATCAAAC	
Mouse Tnfa	CATCTTCTCAAAATTCGAGTGACAA	TGGGAGTAGACAAGGTACAACCC	
Mouse II-1β	GTCGCTCAGGGTCACAAGAA	GTGCTGCCTAATGTCCCCTT	
Mouse Mcp1	GTTAACGCCCCACTCACCTG	GGGCCGGGGTATGTAACTCA	
Mouse II-6	AGTTGCCTTCTTGGGACTGA	TCCACGATTTCCCAGAGAAC	
Mouse Mmp2	GTGTTCTTCGCAGGGAATGAG	GATGCTTCCAAACTTCACGCT	
Mouse Mmp9	ACCACAGCCAACTATGACCAGGAT	AAGAGTACTGCTTGCCCAGGAAGA	
Mouse Tgfβ1	TGTGTTGGTTGTAGAGGGCAAGGA	TTTGGAGCCTGGACACACAGTACA	
Mouse Pdgfβ1	CTGCCACAGCATGATGAGGAT	GCCAGGATGGCTGAGATCACCAC	
Mouse E-Cadherin	AACCCAAGCACGTATCAGGG	GAGTGTTGGGGGGCATCATCA	

Mouse N-Cadherin	ACAGCGCAGTCTTACCGAAG	TGGCTCGCTGCTTTCATAC	
Mouse Vimentin	CTTGAACGGAAAGTGGAATCCT	GTCAGGCTTGGAAACGTCC	
Mouse Fibronectin	GCTCAGCAAATCGTGCAGC	CTAGGTAGGTCCGTTCCCACT	
Mouse Snail1	CACACGCTGCCTTGTGTCT	GGTCAGCAAAAGCACGGTT	
Mouse Twist	CTGCCCTCGGACAAGCTGAG	CTAGTGGGACGCGGACATGG	
Mouse Notch2	TGACTGTTCCCTCACTATGG	CACGTCTTGCTATTCCTCTG	
Mouse Notch3	TTGTCTGGATGGAAGCCCATGT	ACTGAACTCTGGCAAACGCCT	
Mouse Jagged1	GGGAGAGTGATACTTGATGGG	CTCATTGTGGCTTTTGTGGAG	
Mouse Hes1	CTCCCGGCATTCCAAGCTAG	AGCGGGTCACCTCGTTCATG	
Mouse Mst1	GAACACAGACCTGTGGATTG	CGCCTTGATATCTCGGTGTA	
Mouse Mst2	TCTCCTCAATACAGAAGGAC	AGAAGTAATGCCAAGGGACC	
Mouse Lats1	TGGTGACTCTGGGGATAAAGAA	GGGAGTAACTCTGAATCCGAGAC	
Mouse Lats2	ATCCTCCCAAAGGGTACAGCACAG	TGGTGGCGTCTTGTTCTGGAAG	
Mouse Yap	ACCCTCGTTTTGCCATGAAC	CCTTCTCCATCTGTAACTGC	
Mouse Taz	TCCTATGACGTGACCGACGA	GGGTCTTGCCATGTGGTGAT	
Mouse Tead4	TGATGCAGAGGGTGTATGGA	GATCAGCTCATTCCGACCAT	
Mouse C5	CCTGCTGAAGCCCAAGAGAA	GCAGGGTGTTTTCAAGCAGG	
Mouse C5ar1	AGGTCTCTCCCCAGCATCAT	GTCGTGGACGGAGTGAAAGT	
Mouse Cntrl	AGAAGCGTGAAGATGCCAGA	GCTGGTCTTTGGCAATGGTG	
Human β-ACTIN	GCCGGGACCTGACTGACTAC	TTCTCCTTAATGTCACGCACGAT	
Human GAPDH	ACCCAGAAGACTGTGGATGG	TTCAGCTCAGGGATGACCTT	
Human Inc-HSER1	AGTAGTCACTGAGGCTGACG	GCCTCTCAGCGTACTTCCG	
Human Inc-HSER2	CGTGCAAGTGTGTAGAAGCTG	ATGAACGAATGAATTCTCACCAG	
ENST00000466280	AGGCGTTGGCATTTCAAACA	TGGATCTGTTCTCCTCGTACA	
ENST00000489802	CTGCGTATGCTCTTTCCCTG	ACATAGGATACTCAATGCATATT	
NR_148450	CTGGGGCCGAAAGAACAGTC	TGCCTGTCTTTGTGTGGTTGA	
Human COL1α1	AACCAAGGCTGCAACCTGGA	GGCTGAGTAGGGTACACGCAGG	
Human ACTA2	GCCATGTTCTATCGGGTACTTC	CAGGGCTGTTTTCCCATCCAT	
Human IL-6	CAGGAGCCCAGCTATGAACT	GAAGGCAGCAGGCAACAC	

Human IL-1β	GCAGAAGTACCTGAGCTCGC	CTTGCTGTAGTGGTGGTCGG
Human TNF-α	CCTGCCCCAATCCCTTTATT	CCCTAAGCCCCCAATTCTCT
Human BAX	TCAGGATGCGTCCACCAAGAA	TCTGCAGCTCCATGTTACTGTCCA
Human BAD	CAGACCCGGCAGACAGATGAG	CTCACTCGGCTCAAACTCTGG
Human BCL2	GTGGAGAGCGTCAACCGGGAGA	GGGCCGTACAGTTCCACAAAGGC
Human N-CADHERIN	TCAGGCTCCAAGCACCCCTTCA	ATGACGGCCGTGGCTGTGTT
Human E-CADHERIN	CATGAGTGTCCCCCGGTATC	CAGTATCAGCCGCTTTCAGA
Human VIMENTIN	ATTCCACTTTGCGTTCAAGG	CTTCAGAGAGAGGAAGCCGA
Human TWIST	TGCGGAAGATCATCCCCACG	GCTGCAGCTTGCCATCTTGGA
Human SNAIL1	GCACATCCGAAGCCACAC	GGAGAAGGTCCGAGCACAC
Human FIBRONECTIN	CTTTGGTGCAGCACAACTTC	TCCTCCTCGAGTCTGAACCA
Human C5AR1	TCCTGCCCTCCTCATC	GCTGTAGTCCACGCCAC
Human C5	ATGAAACCTGTGAGCAGCGA	GCTTGCGACGACACAACATT

Cloning primers for Inc-Hser

Name	Sequence 5' - 3'
Inc-Hser 5' BamHI F1	cgcggatccGGTTGCTGTTTGTTAGCAGGC
Inc-Hser 5' BamHI R1	cgcggatccTATGATTGCAGTGTTTTGGA
Inc-HSER1 5' BamHI F1	cgcggatccCTTCAAGATTCCGTCTAATCC
Inc-HSER1 5' BamHI R1	cgcggatccAGTGTCAAAAGTAAAGTAGATAAC
Inc-HSER1 5' BamHI F2	cgcggatccCTTCAAGATTCCGTCTAATC
Inc-HSER1 5' Xho1 R2	ccgctcgagAGTGTCAAAAGTAAAGTAGA
Inc-HSER2 5' BamHI F1	cgcggatccCCTGCCACTTTCACAGTGTAC
Inc-HSER2 5' BamHI R1	cgcggatccCCCCAAAACATGCAATTTACC
Inc-HSER2 5' BamHI F2	cgcggatccCCTGCCACTTTCACAGTGTA
Inc-HSER2 5' Xho1 R2	ccgctcgagCCAAAACATGCAATTTACCC

shRNA sequences

Name	Sequence 5' - 3'
Mouse sh-Inc-Hser-1 Forward	GATCCCCGGACTGTATTTGTCACAAGTTCAAGAGACTTGTGACAAATACAGTC
	СТТТТТА
Mouse sh-Inc-Hser-1 Reverse	AGCTTAAAAAGGACTGTATTTGTCACAAGTCTCTTGAACTTGTGACAAATACA
	GTCCGGG
Mouse sh-Inc-Hser-2 Forward	GATCCCCCCATGGCTGAGTCCTCATTTTCAAGAGAAATGAGGACTCAGCCAT
	GGTTTTTA
Mouse sh-Inc-Hser-2 Reverse	AGCTTAAAAAACCATGGCTGAGTCCTCATTTCTCTTGAAAATGAGGACTCAGCC
	ATGGGGG
Negative control Forward	GATCCCCGTTCTCCGAACGTGTCACGTTCAAGAGACGTGACACGTTCGGAG
	AACTTTTTA
Negative control Reverse	AGCTTAAAAAGTTCTCCGAACGTGTCACGTCTCTTGAACGTGACACGTTCGG
	AGAACGGG

siRNA sequences

Name	Forward 5' - 3'	Reverse 5' - 3'
Mouse si-Inc-Hser-1	GGACUGUAUUUGUCACAAGTT	CUUGUGACAAAUACAGUCCTT
Mouse si-Inc-Hser-2	CCAUGGCUGAGUCCUCAUUTT	AAUGAGGACUCAGCCAUGGTT
negative control	GUUCUCCGAACGUGUCACGTT	CGUGACACGUUCGGAGAACTT

gRNA sequences

Name	Sequence 5' - 3'
Mouse gRNA1 Forward	caccgATATGCTCCCGGACCCACCC
Mouse gRNA1 Reverse	aaacGGGTGGGTCCGGGAGCATATc
Mouse gRNA2 Forward	caccgCGGCTCACCTGTAAGTTACG
Mouse gRNA2 Reverse	aaacCGTAACTTACAGGTGAGCCGc

RACE primers for Mouse-Inc-Hser

-	
gene specific primer	Sequence 5' - 3'
3' OUTER PRIMER	GATTACGCCAAGCTTGCTGAGCAGTGCCAGAGCATCAGAGCCA
5' OUTER PRIMER	GATTACGCCAAGCTTGCCATGGGAGCCTGGCCCTGTGAAGA
5' INNER PRIMER	GATTACGCCAAGCTTGCAGGAGTCTCATTGCCTTTGGCTTTC

Primers for Mouse ChIP qRT-PCR

Locus	Forward 5' - 3'	Reverse 5 '- 3'	
Inc-Hser (-13618)	TTTGCCTCGTGCTCT	CCTCACATTTATGTACCCT	
Inc-Hser (-913806)	TAAGCGCATTGCCCCTTCTC	TGGTAGCATCCTTGGTCCTG	
Inc-Hser (-19941819)	ATGATGCCAAAAGCCCTCTGT	AGGGCAGAGCAGAAGTTGAT	
C5aR (-131—36)	CACATCTCCCTAACCCCCTT	CCCAGCCTGGTGGCTTTTAT	
C5aR (-800711)	ACAGAGTGTTGGGATTGCGT	CCACCTGCATAGGAAGGACC	
C5aR (-19061827)	GAACCTCTTGCAAGCCCACC	GAACCTCTTGCAAGCCCACC	
Notch2 (-371300)	TTTGATGTTGGGCGCTTCAG	GGTTTCCCGCAGAAAGAAGC	
Notch2 (-11231014)	CACCCATTTGCACTTGCTGAA	ACACGGGGAAGTCTTTATGGC	
Notch2 (-1965-1890)	GGTAACACCATGGGTGAACAAA	GGCAATTTCTGCTTGTGCCAT	
Notch3 (-234165)	TTGCAGACCTCGGTACACTC	GATACCTGTCACGTCACGCA	
Notch3 (-10831014)	CTCCATCACTAGGAGACCAAAGG	GTGTCTGTGTATGCCCTTCCA	
Notch3 (-19081765)	AGAACCTGGGGTTTCCAGTG	GGGATCCAGTCTTCGGTCCA	
Hes1 (-22360)	TTGACGTTGTAGCCTCCGGT	AACGGCTCGTGTGAAACTTCC	
Hes1 (-1199-1007)	CAGCTGCTATTTACCTTCTTGGC	AGCACGTGCCAGGATGTTTT	
Hes1 (-16091522)	AAGTGCGGTCAGGCATCTC	ATCTGAGCGTGGCCGAAAC	
Gapdh intron	ATCCTGTAGGCCAGGTGATG	AGGCTCAAGGGCTTTTAAGG	

Metavir score	Healthy (F0)	Mild fibrosis (F1-F2)	Advanced fibrosis (F3-F4)
Cases(n)	6	16	12
Age (years)*	57.7 ±15.7	53.6 ±10.3	50.8 ± 9.4
Male sex (<i>n</i> (%))	4 (66.7)	7 (43.8)	7(58.3)
ALT (U/L)*	22.0 ± 12.3	34.7 ± 32.0	32.5 ± 15.2
AST (U/L)*	26.5 ± 12.6	60.5 ± 54.2	39.1 ± 16.3
ALB (g/L)*	38.3 ± 7.9	41.3 ± 3.7	43.9 ±12.1
GGT (U/L)*	47.3 ± 25.0	72.9 ± 50.4	122.5 ± 89.2
Etiology (n (%))			
Biliary Obstruction	0 (0)	2 (12.5)	0 (0)
HBV	0 (0)	14 (87.5)	11 (91.7)
HCV	0 (0)	0 (0)	1 (8.3)

Table S2. Baseline characteristics of patients with liver tissue

*Mean ± SD.

ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALB, Albumin; GGT, γ-glutamyl transpeptadase; HBV, hepatitis B virus; HCV, hepatitis C virus.

Table S3. Serum levels of ALT, AST in CCl₄-induced liver fibrosis model (mean \pm SD, n =

5)		
Group	ALT (U/L)	AST (U/L)
NC group	38.8 ± 8.4	47.9 ± 5.3
NC + CCl ₄ group	157.5 ± 23.7 [*]	205.3 ± 35.8 [*]
Inc-Hser-shRNA group	44.9 ± 5.5	53.4 ± 10.5
Inc-Hser-shRNA + CCl₄ group	261.6 ± 67.8 [#]	293.9 ± 46.5 [#]

p<0.05 compared with the NC group. p<0.05 compared with NC + CCl₄ group. All statistical analyses were performed using SPSS version 13.0 software and p<0.05 indicated statistical significance.