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Abstract 

Artificial intelligence (AI) based on convolutional neural networks (CNNs) has a great potential to 
enhance medical workflow and improve health care quality. Of particular interest is practical 
implementation of such AI-based software as a cloud-based tool aimed for telemedicine, the 
practice of providing medical care from a distance using electronic interfaces.  
Methods: In this study, we used a dataset of labeled 35,900 optical coherence tomography (OCT) 
images obtained from age-related macular degeneration (AMD) patients and used them to train 
three types of CNNs to perform AMD diagnosis.  
Results: Here, we present an AI- and cloud-based telemedicine interaction tool for diagnosis and 
proposed treatment of AMD. Through deep learning process based on the analysis of preprocessed 
optical coherence tomography (OCT) imaging data, our AI-based system achieved the same image 
discrimination rate as that of retinal specialists in our hospital. The AI platform’s detection accuracy 
was generally higher than 90% and was significantly superior (p < 0.001) to that of medical students 
(69.4% and 68.9%) and equal (p = 0.99) to that of retinal specialists (92.73% and 91.90%). 
Furthermore, it provided appropriate treatment recommendations comparable to those of retinal 
specialists.  
Conclusions: We therefore developed a website for realistic cloud computing based on this AI 
platform, available at https://www.ym.edu.tw/~AI-OCT/. Patients can upload their OCT images to 
the website to verify whether they have AMD and require treatment. Using an AI-based cloud 
service represents a real solution for medical imaging diagnostics and telemedicine. 

Key words: deep learning, convolutional neural network, artificial intelligence (AI), AI-based website, 
telemedicine, cloud website 
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Introduction 
Artificial intelligence (AI) has proved to be 

applicable in multifarious fields, including medical 
tests and diagnostics. For instance, in microscopic 
examinations, AI can reliably predict certain 
fluorescent labels on transmitted light microscopy 
images of unlabeled, fixed, or live biological samples 
[1]. In ophthalmology, AI can correctly identify 
diseases as accurately as specialists [2]. Medical 
imaging provides vital clues for diagnosing doctors. 
Because of the development of graphics processing 
units (GPUs), nowadays AI can quickly review and 
classify substantial imaging data through a process 
called deep learning, which has been improved and 
optimized through methods such as a convolutional 
neural networks (CNNs) [2]. Kermany et al. 
developed an optical coherence tomography (OCT) 
imaging diagnostic tool based on a deep learning 
framework for screening patients with choroidal 
neovascularization (CNV), diabetic macular edema 
(DME), and drusen [2]. Several studies have used AI 
to detect individual disease manifestations, such as 
intraretinal fluid, drusen, or quantification of macular 
fluid, based on OCT imaging [3-5]. The first and only 
FDA-authorized AI system, IDx, designed to 
autonomously detect diabetic retinopathy, has been 
announced recently. Still, the extent to which AI can 
make correct medical assessments and 
recommendations remains controversial. 

Telemedicine is defined as the practice of 
providing medical care from a distance using 
electronic interfaces [6]. Since the early 1990s, it has 
been used to overcome distance barriers and improve 
access to medical services unavailable in remote rural 
communities. Telemedicine-based care can occur 
between clinicians and patients, among clinicians, or 
between patients and surrogates (e.g., a coach, 
pharmacy technician, patient navigator, or interactive 
module or game). Patients and clinicians can engage 
in real-time virtual consultations through a stepwise 
(store-and-forward) process in which data are 
uploaded for review by a clinician prior to 
consultation or remote monitoring of a patient. For 
example, through the acquisition of non-mydriatic 
fundus photographs by non-ophthalmologists or 
primary care physicians, ophthalmologists can 
remotely diagnose patients with vision-threatening 
diabetic retinopathy [7]. The benefits of 
store-and-forward telemedicine comprise both the 
increase of information delivery between different 
specialists and hospitals, as well as prevention of 
omissions or loss of records. However, efficiently 
obtaining immediate diagnosis and treatment 
recommendations without increasing medical 

specialists’ workload or procedural costs is a major 
problem. Cloud computing represents the fastest 
developing area in health care. Omnipresent 
on-demand access to virtually endless resources 
combined with a pay-per-use model offers a new 
method of delivering and using services. Cloud 
computing is commonly used in genomics, 
proteomics, and molecular medicine, but applications 
in other fields remain insufficient [8]. Whether 
established cloud-based telemedicine could be 
combined with AI technology to improve medical 
workflow remains unclear. 

Age-related macular degeneration (AMD) 
mainly affects elderly people and accounts for 8.7% of 
all cases of blindness in the developed countries [9]. 
The global prevalence of AMD is 8.69%, being higher 
among Europeans than among Asians or Africans [9]. 
AMD is classified as either dry or wet AMD. Dry 
AMD is characterized by multiple drusen deposits 
and rarely affects vision. Dry AMD can progress not 
only to geographic atrophy but also to wet AMD, 
which is characterized by active CNV and leads to 
significant vision impairment. Intravitreal injection of 
anti-vascular endothelial growth factor (anti-VEGF) 
drugs is considered to be the optimal treatment for 
CNV. However, any improvement is accompanied by 
long-term monthly intravitreal injections and 
uncertainty concerning the treatment duration and 
possible recurrence of CNV [10]. Screening and early 
detection of active CNV are therefore crucial. This was 
demonstrated with the studies using ForeseeHome, a 
home-based visual field monitoring system, which 
showed earlier detection of CNV and improved visual 
outcomes compared to standard care [11]. In cost 
effective analysis, monitoring patients with CNV in 
one eye is a cost-saving measure, but for patients with 
low CNV risk it is generally not cost-effective [12]. 
OCT is a noninvasive, noncontact diagnostic 
technique that allows reliable detection of CNV 
activity and identification of pathological lesions of 
the retina and choroid [13]. However, with the 
increase of the aging population worldwide, the 
number of patients with AMD is expected to grow, 
thus requiring efficient disease management based on 
OCT imaging analysis in clinical practice. To achieve 
this aim, an AI-based cloud service that can correctly 
diagnose and recommend medical treatment and 
enable patients or clinicians to upload patient data 
and immediately obtain information promises to be 
efficient, convenient, and inexpensive. In this study, 
we aimed to develop such cloud computing tool 
specifically for diagnosing and managing AMD 
(Figure 1). By combining the concepts of AI and cloud 
computing, this platform can open new opportunities 
for telemedicine. In contrast to Kermany et al., who 
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used only InceptionV3 model to identify CNV, DME, 
and drusen by inputting OCT image data [2], we 
trained three CNN models (VGG16, InceptionV3, and 
ResNet50) to identify normal macula and three types 
of AMD: dry AMD (drusen), inactive wet AMD, and 
active wet AMD. We provided not only theoretical 
proof of AI’s ability, but also developed a website for 
a cloud service based on this AI platform, available at 
https://www.ym.edu.tw/~AI-OCT/. Regardless of 
physical location, connected patients or clinicians can 
upload OCT images without preprocessing and 
immediately obtain information on AMD types and 
recommended treatment from this user-friendly AI- 
and cloud-based website. 

Methods 
AMD classification  

In patients with dry type AMD, multiple drusen 
deposits can be found in the macula. In wet AMD, 
CNV is found beneath the macula and is comorbid 
with subretinal exudation or hemorrhage. Both 
drusen and CNV can be clearly identified on OCT 
scans. Vision is seldom affected by drusen in patients 

with dry AMD, whereas in those with wet AMD, 
active CNV often leads to severe vision impairment. 
Several examinations are used to clinically evaluate 
CNV activity, including indirect ophthalmoscopy, 
fundus photography, fundus fluorescence 
angiography (FAG), and OCT. Yellowish exudate and 
hemorrhage can be detected through indirect 
ophthalmoscopy and fundus photography, and 
late-phase hyperfluorescent lesions with leakage can 
be observed through FAG. FAG remains the gold 
standard for initial diagnosis of CNV, but studies 
have revealed that OCT results are sensitive in 
differentiating CNV activity and thus were used in 
previous clinical trials to access the need of 
retreatment of CNV (14). Signs indicating active CNV 
include subretinal fluid, intraretinal cysts or 
hyporeflective space, and subretinal hyperreflective 
exudate. When the CNV is inactive, subretinal fluid 
and intraretinal cysts disappear. In our study, we 
divided patients into normal, dry AMD, active wet 
AMD and inactive AMD—patients with different 
disease stages requiring different treatment strategies 
(Figure 1B). 

 

 
Figure 1. Approach to developing an AI-based cloud computing service for diagnosing AMD and providing medical guidance. (A) The main architecture of our AI 
model is a CNN consisting of many layers. Each layer extracts different OCT image features; subsequently, all of the extracted features are integrated. The AMD type 
is determined and a method of treatment is suggested. (B) Subsequently, a website for this new AI-based medical image diagnosis system was developed, where users 
can upload OCT images to the cloud. The AI software analyzes the images and, based on the results, indicates the AMD type and the action to be taken. Disease 
staging and treatment plans can be autogenerated simply by importing OCT scans. 
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Image collection and labeling 
The initial OCT image data were collected from 

patients with AMD who sought medical help at the 
Department of Ophthalmology of Taipei Veterans 
General Hospital in Taipei, Taiwan, between January 
1 and December 31, 2017. In addition, 174 normal 
controls were included. The study was approved by 
the hospital’s Institutional Review Board and 
informed consent was obtained from patients and 
healthy control subjects. Two senior retina specialists 
were recruited to classify the OCT images into four 
categories and label the OCT image features, based on 
which the AI model was established. Normal, dry 
AMD (drusen), and wet AMD with active or inactive 
CNV were defined as types 1, 2, 3, and 4, respectively. 
Finally, experienced ophthalmologists verified all the 
data based on OCT, color fundus, and FAG images 
and clinical records, thereby confirming that the OCT 
image classification and labeling was consistent with 
the proper diagnosis (Figure 2). 

Image pre-processing and model development 
The initial OCT data were collected from three 

OCT devices of two types, Zeiss Cirrus HD-OCT 4000 

and Optovue RTVue-XR Avanti, thus their formats 
and resolutions were different. We performed initial 
quality control, filtering out images with low 
resolution or improper format. The inclusion criteria 
were 3499 × 2329, 2474 × 2777, or 948 × 879 raw image 
formats. Subsequently, we performed data 
augmentation procedure by reversing all of the OCT 
images to obtain mirror images, thus doubling their 
total number. The mirror images would be different 
from the original images in the positions of features, 
such as optic nerve, shape, and location of subretinal 
lesions (e.g., drusen, RPED, or fluid). The augmented 
dataset was used only for training, but not for 
verification of AI models. We also normalized the 
images by changing their sizes and resolutions before 
using them to develop the AI model (Figure 2). By 
establishing the same standard for all images, the 
normalization process resulted in improved training 
efficiency. The equation for altered resolution is P′i = 
(Pi – Pmean) / Pstd. For each OCT image, Pi denotes each 
pixel, Pmean and Pstd are the mean and standard 
deviation, respectively, of all pixels, and P′i is the 
resulting altered pixel.  

 

 
Figure 2. Workflow diagram demonstrating the process and different stages of preparation of the OCT image dataset and training CNN models. The three major 
stages were image preparation (top box), which included the consecutive steps of image collection, labeling by four classes, dataset augmentation by horizontal 
flipping, and image cropping and normalization; CNN training (middle box) performed with randomly selected 80% of the image dataset (28,720 images), with the 
remaining 20% (7,180) used for validation aimed to evaluate whether the models required further modification and retraining. The final stage (bottom box), was 
verification of the best model from the training stage performed using an independent set of 3,872 images. 
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After image processing, the database images 
were divided into two groups: 80% of the images 
formed a training group, and the remaining images 
formed a validation group. The OCT images in the 
training and validation groups were used to establish 
and validate the models, respectively. The AI models 
had different CNN architectures, namely, ResNet50, 
InceptionV3, and VGG16; these have already been 
widely used in image recognition, with demonstrated 
efficiency. These architectures include 
hyperparameters such as batch size, epoch, learning 
rate, and optimizer that can be adjusted to enhance 
recognition accuracy. The training results of the AI 
models were evaluated using data from the validation 
group. Moreover, the AI models were established 
using a QNAP TS-1685 Linux-based server with an 
Intel Xeon CPU, an NVIDIA QUADRO GP100 16 GB 
GPU card, and 64 GB available RAM for training and 
validation. 

Verification of final AI models and comparison 
between reviewers and AI 

The top three models were used for verification 
with all four condition types: normal, dry (drusen), 
active and inactive wet AMD. For verifying the 
established AI models, we randomly selected 3,872 
(968 of each type) qualified OCT images from 100 
AMD patients and 100 non-AMD controls who visited 
and were treated in our hospital before 2017. For 18 
AMD patients, the sequences of 10 OCT images were 
taken at different time points for analyzing the ability 
of the AI model to track the disease activity 
longitudinally. None of the images from this 
verification dataset were used for CNN training. We 
used not only our own OCT images, but also other 
clinical images used by Kermany et al [2]. Moreover, 
four reviewers were recruited to compare the AI 
models and clinical reviewers for performance. 
Reviewers 1 and 2 were qualified retinal specialists in 
our hospital, and reviewers 3 and 4 were medical 
students. Our verification data included 3,872 images 
divided equally into four categories, with each 
category containing 968 images. The other 750 clinical 
OCT images from Kermany et al. [2] were divided 
into only three categories (normal, wet, dry), each 
category containing 250 images.  

Statistical analysis 
A confusion matrix was used to present the 

results of clinical verification and compare the 
predictions of the AI models with ophthalmologists’ 
prediction of each category. The confusion matrix 
visualized AI model performance, comprising four 
combinations of prediction and ground truth (label): 
true positive (TP), false positive (FP), false negative 

(FN), and true negative (TN). P and N represented the 
prediction, and T and F indicated whether it was 
correct. For example, in a normal OCT image 
category, TP meant that the AI model provided a 
correct prediction for OCT images with the normal 
label, FP meant that it misjudged the image as 
belonging to some other category, FN meant that it 
incorrectly predicted an image from the normal 
category, and TN meant that its prediction was correct 
for OCT images without the normal label. AI model 
performance was indicated by three major outcomes, 
namely, accuracy, specificity, and sensitivity, which 
were measured according to the confusion matrix by 
using the following equations: 

Accuracy = (TP + TN) / (TP + FP + TN + FN) 

Specificity = TN / (FP + TN) 

Sensitivity = TP / (TP + FN) 

A receiver operating characteristic (ROC) curve 
was applied to represent AI model performance, with 
its X and Y axes defined as the false positive rate (FPR) 
and true positive rate (TPR), respectively, and a value 
between 0 and 1. The TPR resulted from the 
sensitivity equation, whereas the FPR was measured 
by subtracting the specificity value from 1. The closer 
the ROC curve was to the upper left corner, the more 
satisfactorily the AI model performed. The area under 
the curve (AUC) of ROC was also used to assess AI 
model performance, with the AUC value being 
between 0.5 and 1; the higher the value, the more 
correct the AI model’s predictions.  

Results 
Preparation of OCT image dataset and 
training CNN models  

To train CNN models for differentiation of OCT 
images of normal and AMD-affected retinas, we used 
the approach outlined in Figure 2. Initially, we 
collected 23,342 clinical OCT images from 583 patients 
with AMD and 174 nonpatients. After image quality 
control, 17,950 images were selected for further CNN 
training, among which 3,962 had been labeled by 
clinicians as normal, 1,453 as dry AMD, 5,652 as active 
wet AMD, and 6,883 as inactive wet AMD. To 
improve deep learning efficiency, this dataset was 
augmented by flipping each image from left to right, 
thus doubling the total number of images to 35,900. 
Moreover, all images were adjusted to the same size 
and resolution. They were subsequently randomly 
divided into two groups, with 80% (28,720 images) 
used as a training set, and 20% (7,180 images) used as 
a validation set. Three CNN architectures (ResNet50, 
InceptionV3, and VGG16) were tested using the 
training dataset, and the performance of different 
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models based on these three types was verified using 
the validation dataset. The top-performing ResNet50, 
InceptionV3, and VGG16 models were further 
verified using an independent set of 3,872 OCT 
images, with 968 images in each category. 
Furthermore, the OCT images employed by Kermany 
et al. [2] were also obtained and used to verify the 
established models.  

Establishing AI models 
After testing several models, ResNet50, VGG16, 

and InceptionV3 were used to establish CNN-based 
AI models. In the case of ResNet50, for example, the 
CNN architecture comprised several layers: 
convolution layers, max pooling layers, and a fully 
connected layer, as shown in Figure 3 and Figure S1. 
The function of the convolution layers was to extract 
the image features used to differentiate image classes. 
First, the AI model transformed the OCT image into 
an RGB image to execute transfer learning. The 
extracted features were presented as a grayscale 
diagram. The max pooling layer filtered the features 
and reduced the feature map dimensionality for 
computational efficiency. Finally, the fully connected 
layer integrated all the filtered features and 
performed image recognition.  

As shown in Figure 3C, multiple features were 
extracted using the ResNet50 CNN model. While the 
features in the top layers were mostly general, less 
specific shapes, in the bottom layers they were more 

essential and specific. The grayscale diagram was 
subsequently transferred to a heat map, representing 
what the AI model designated as significant regions; 
the redder the region, the more significant the AI 
model deemed it. After adjustment of parameters, our 
results showed that VGG16, InceptionV3, and 
ResNet50 all exhibited high accuracy during 
verification. Several hundred models were tested to 
identify the optimal performance and define optimum 
parameters, as shown in Figure S2. Layers were 
trained through stochastic gradient descent in batches 
of 64 images per step, using an Adam Optimizer with 
a learning rate of 0.001. Training for all categories was 
run for 100 epochs and the best models with the 
minimal value of loss (corresponding to 91th, 88th, 
and 65th epochs for VGG16, InceptionV3 and 
ResNet50, respectively) were selected and used for the 
verification (Figure S2).  

Verification of the final model 
For verifying the established AI models, we 

randomly selected 3,872 (968 of each type) qualified 
OCT images from 100 AMD patients and 100 
non-AMD controls who visited and were treated in 
our hospital before 2017. The confusion matrices 
shown in Figure 4A represent AI model performance 
in diagnosing all four AMD types. The accuracies of 
the VGG16, InceptionV3, and ResNet50 AI models 
were 91.40% (3539/3872), 92.67% (3588/3872), and 
90.73% (3513/3872), respectively (Table 1). The 

 
Figure 3. Evaluation of CNN model performance, using ResNet50 as an example. (A-B) Architecture of ResNet50 consisting of convolution layers, max pooling 
layers and a fully connected layer (output layer). (C) Image features extracted from convolution layers at different depths. (D) Representative heat maps 
demonstrating discriminative image regions, that is, regions with the highest feature density. 
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receiver operating characteristic (ROC) curves and 
area under curves (AUC) of different CNN models are 
shown in Figure 4B. The AUCs of the VGG16, 
InceptionV3, and ResNet50 models were 0.983, 0.978, 
and 0.987, respectively. All CNN models 
demonstrated high sensitivity (>99%) for the normal 
retina (Table 1). Similarly, inactive wet type AMD 
was also identified with very few false positives 
(>96% sensitivity, Table 1). On the other hand, dry 
type AMD (drusen) and active wet AMD were 
relatively frequently false positively classified as 
inactive wet, i.e., our AI models had the lowest 
specificity for the latter class (Figure 4A and Table 1). 
After checking several misclassified images and 
feature density heatmaps carefully, we found that the 
AI sometimes misclassified the active wet AMD as 

inactive if subretinal fluid was shallow or located at 
the periphery (Figure 4C). Also, the AI usually 
misclassified dry AMD (drusen) as inactive wet AMD 
if the drusenoid RPE detachment was large or 
confluent (Figure 4C). In relatively rare cases, the AI 
misclassified inactive wet AMD as active wet AMD if 
the neovascular scar was big and the reflective signal 
of OCT was irregular (Figure 4C). 

Since we applied an approach of augmentation 
of training dataset by horizontal flipping of OCT 
images, we also tested the CNN model performance 
when they were trained with an unaugmented dataset 
of original 17,950 images. The verification showed 
that the accuracies of such models were marginally 
lower than when using the augmented training 
dataset (90.47% vs. 91.4%, 92.67% vs. 90.73, 90.24% vs. 

 
Figure 4. Verification of the performance of the final CNN models. (A) Confusion matrices demonstrating the prediction accuracies of the three CNN models. (B) 
Receiver operating characteristic (ROC) curves demonstrating the accuracies of prediction of AMD types. Areas under the macroaverage ROC curves are almost 
equal to those of the microaverage ROC curves of three CNN models, indicating a balanced testing set. The ROC coverage area for each disease subtype is also 
shown. (C) OCT images and feature heatmaps demonstrating some cases of misclassification. An image of correctly classified active wet AMD is shown on the left 
for reference. The areas containing misclassified features are marked in red. 
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90.73% for VGG16, ResNet50 and InceptionV3, 
respectively) (Figure S3 and Table S1). Moreover, for 
the classes that were more frequently misclassified as 
false positives (dry and active wet), there was an even 
more drastic decrease in sensitivity when training 
with the unaugmented dataset. For example, the 
sensitivities for dry AMD were 83.99% (VGG16), 
85.64% (InceptionV3), and 81.20% (ResNet50) when 
these CNNs were trained with the augmented dataset 
(Table 1), and 81.30% (VGG16), 80.37% (InceptionV3), 
and 78.41% (ResNet50) when trained with the 
unaugmented dataset (Table S1). In light of this, we 
used CNNs trained with the augmented dataset for 
other experiments and development of the 
cloud-based software.  

 

Table 1. Verification summary of three AI models performance 
using our hospital’s dataset showing the parameters of accuracy 
(the percentage of true positives and true negatives of all classes 
among total number of verification images), sensitivity for each 
class (percentage of true positives among all positives) and 
specificity for each class (percentage of true negatives among all 
negatives). 

 VGG16 InceptionV3 ResNet50 
Accuracy 91.40% 92.67% 90.73% 
Sensitivity (normal) 99.07% 99.38% 99.17% 
Sensitivity (dry AMD) 83.99% 85.64% 81.20% 
Sensitivity (inactive wet AMD) 96.07% 97.11% 95.35% 
Sensitivity (active wet AMD) 86.47% 88.53% 87.19% 
Specificity (normal) 99.54% 99.70% 99.80% 
Specificity (dry AMD) 99.34% 99.57% 99.45% 
Specificity (inactive wet AMD) 90.40% 91.82% 90.24% 
Specificity (active wet AMD) 99.05% 98.99% 97.84% 

 
Furthermore, we also used the OCT images 

employed by Kermany et al. [2] to verify the accuracy 
of our AI models. All three CNN-based AI models 
performed with high accuracy (>90%) when these 
images were used for verification (Table 2). 
Consistent with the verification results from our 
dataset, all models had high sensitivity to normal 
retinas and lower sensitivity to dry AMD (Table 2).  

 

Table 2. Verification summary of three AI models performance 
using the dataset previously analyzed by Kermany et al. [2]. Shown 
are the parameters of accuracy (the percentage of true positives 
and true negatives of all classes among total number of verification 
images), sensitivity for each class (percentage of true positives 
among all positives) and specificity for each class (percentage of 
true negatives among all negatives). 

 VGG16 InceptionV3 ResNet50 
Accuracy 91.20% 96.93% 95.87% 
Sensitivity (normal) 100% 100% 99.6% 
Sensitivity (dry AMD) 74.4% 90.80% 90% 
Sensitivity (active wet AMD) 99.2% 100% 98% 
Specificity (normal) 95.2% 97.4% 97.2% 
Specificity (dry AMD) 100% 100% 99.4% 
Specificity (active wet AMD) 91.6% 98% 97.2% 

 

Detecting condition changes within sequenced 
OCT images 

After sorting the images by AMD-affected eyes 
and time series, our results indicated that the AI 
platform provided fast and precise detection of 
condition changes in the OCT images (Figure 5A); as 
soon as a new large drusen developed from a normal 
retina or a new active CNV appeared, the AI model 
would detect it, even if the change was small. 
Moreover, we chose 18 cases that had been 
longitudinally followed up 10 times to compare the 
accuracy of diagnosis and prediction of disease or 
treatment changes on these 10 occasions. As the heat 
map matrix in Figure 5B illustrates, in large image 
series (more than 10 OCT images in 1–2 years) the AI 
model clearly distinguished active CNV scars from 
inactive ones. This could assist in deciding whether to 
treat or observe during the follow-up period of 
patients with wet AMD.  

Comparison of performance of AI model and 
clinical specialists in detecting AMD 
progression 

Initially, we observed that the AI model could 
detect AMD type changes by analyzing the time series 
of OCT images obtained from the same patient, such 
as drusen development from normal retina and 
appearance of active CNV in initially dry 
AMD-affected retina (Figure S4). The accuracy of 
detection was identical or even better than that of four 
clinical reviewers, even though the changes were 
relatively small. To evaluate the performance of the 
AI model in more detail, we chose 18 AMD cases that 
have been followed in a time series of 10 consecutive 
checkups and compared the accuracy of diagnosis 
and treatment-associated changes between the 
ResNet50 AI model and four reviewers, two of whom 
were experienced retinal specialists in our hospital 
(Reviewers 1 and 2) and two were less experienced 
medical students (Reviewers 3 and 4). As shown by 
hierarchical clustering of prediction accuracy scores, 
the AI model and experienced Reviewers 1 and 2 had 
similarly high prediction accuracy scores, which 
clustered together; on the other hand, less 
experienced Reviewers 3 and 4 demonstrated 
markedly worse prediction accuracy scores, which 
clustered separately from the cluster of the AI, 
Reviewer 1 and 2 (Figure 5A). Then, we analyzed the 
prediction efficiency of the AI as compared to the 
reviewers within the time series of different lengths. 
The sequences of the first 2, 4, 6, 8 and 10 images from 
the original 10-image series were analyzed and it was 
revealed that both AI and experienced Reviewers 1 
and 2 had similarly high mean prediction accuracies 
for all 5 time series (Figure 5B). In contrast, less 
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experienced Reviewers 3 and 4 demonstrated 
significantly lower mean prediction accuracies in all 
series, with a steady decrease in accuracy with 

increasing length of the series (Figure 5B). Figure S5 
shows five typical cases of predictions in a 10-times 
time series. 

 

 
Figure 5. Comparison of the performance of the AI model and clinical specialists in detecting AMD progression. (A) Hierarchical clustering of prediction accuracy 
scores of 18 AMD cases, each consisting of 10 consecutive follow-ups. The scores labeled red signify high prediction accuracy and green, low accuracy. A typical case 
of low prediction score in 10 follow-ups (4 wrong predictions out of 10) is shown at the top and a high prediction accuracy case (0 wrong predictions out of 10) is 
shown at the bottom, where green color represents inactive wet AMD and red color active wet AMD. (B) Mean prediction accuracies of the AI model and four 
reviewers within time series of different lengths (2, 4, 6, 8 and 10 observations). Error bars represent standard deviations. 
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Figure 6. Longitudinal disease tracking of active and inactive CNV status changes between any two consecutive OCT images along a time series by the AI model and 
four clinical reviewers. (A) Scoring of all correctly (match) and incorrectly (mismatch) identified active-active, inactive-inactive, active-inactive and inactive-active 
status changes in pairs of consecutive OCT images. (B) Quantification of incorrectly (mismatch) identified cases of AMD status change. 

 
Next, we scored the cases of correct 

identification of AMD status changes between any 
two consecutive OCT images in the time series, 
namely no change between active AMD, no change 
between inactive AMD, change from active to inactive 

and change from inactive to active types (Figure 6A). 
Misdiagnoses occurred less frequently when two 
consecutive images showed persistently active lesions 
and most frequently when these were persistently 
inactive (Figure 6B). More misdiagnoses were 



 Theranostics 2019, Vol. 9, Issue 1 
 

 
http://www.thno.org 

242 

consistently made by reviewers 3 and 4. 
To summarize, our results indicated that the AI 

models exhibited non-inferior performance in 
diagnosing and predicting disease or treatment 
changes when compared with retinal specialists in our 
hospital and superior performance when compared 
with medical students trained in ophthalmology.  

Development of cloud-based AMD diagnostic 
service  

This study demonstrated the utility of a 
CNN-based AI platform for analyzing OCT images to 
classify AMD types and provide medical 
recommendations. Having verified the AI platform as 
already described, we integrated the CNNs into a 
cloud-based service available on the following 
website: https://www.ym.edu.tw/~AI-OCT/ . The 
website consists of four tabs: Main, Tutorial, OCT 
Suggest, and Contact Us (Figure S6A). The Main tab 

describes the resources and website structure, and the 
Tutorial tab contains instructions on how to use the 
resources. OCT Suggest opens the interface for actual 
image analysis, which is organized into four 
consecutive steps: 1) Upload OCT file, 2) Select area of 
analysis, 3) Select AI model for diagnosis, and 4) 
Diagnosis result (Figure 7 and Figure S6B). Clicking 
on the OCT Suggest tab opens a dialogue box for 
uploading an image file. After uploading, the OCT 
image is displayed on the webpage, and the area to be 
analyzed can be selected. When one of the three AI 
models (ResNet50, VGG16, or Inception V3) has been 
selected, analysis is started by clicking on the OCT 
Analysis tab. In addition, the image can be rotated by 
90°. The analysis normally takes 3–6 s, after which the 
webpage displays the diagnosis results and a heat 
map displaying the position of lesion features in the 
OCT image. 

 

 
Figure 7. Interface outline and user guide of the cloud-based AI-OCT software. The consecutive steps of OCT image analysis include image upload, area selection, 
choice of one of three CNN models, and diagnosis output (shown on the right). Typical screenshots of the interface for each of these steps are shown on the left. The 
output (bottom) includes AMD type classification and suggestion for the action to be taken. 
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Discussion 
AI has proved to be useful in various fields. 

Deep learning algorithms based on CNNs are 
increasingly finding application in medical 
diagnostics and could reduce the workload of medical 
personnel. Although some studies have demonstrated 
that AI can identify diseases with accuracy similar to 
that of human specialists, the extent of AI’s 
involvement in medical decision-making remains 
controversial. In this study, we integrated the 
concepts of cloud computing and telemedicine with 
AI in diagnosing AMD and providing treatment 
recommendations, thereby demonstrating that smart 
health practices may lead to accurate diagnostic tools, 
more effective patient care, and devices that improve 
quality of life. Although an AI system that can 
diagnose diseases and provide treatment strategy 
decisions can benefit both doctors and patients, 
accessing such a service is difficult when it is located 
solely at a research center. By means of a user-friendly 
cloud computing website, our AI model can be used 
by anyone who has a computer and an Internet 
connection, marking a major breakthrough in current 
AI-based medical diagnostics and treatment 
decision-making. 

Kermany et al. presented human-labeled 
datasets for researchers to use in training CNNs to 
“read” OCT image layers and integrate them into 
predicted disease classifications [2]. Similarly, Prahs 
et al. attempted to train their deep learning algorithm 
to impersonate a physician in treatment 
decision-making [15]. In our study, rather than only 
training a completely blank network, we also used 
fully connected feed-forward networks to fix the 
weights in the lower levels already optimized to 
recognize structures generally found in images and 
retrain the weights of upper levels through back 
propagation. In contrast to Kermany et al., who used 
only an InceptionV3-based model [2], we trained 
three different CNN models to identify normal 
macula and three AMD types. Through a transfer and 
deep learning process, we observed that the trained 
VGG16, InceptionV3, and ResNet50 models identified 
AMD types with accuracies of 91.40%, 92.67%, and 
90.73%, respectively. No one model surpassed the 
other two when the test conditions were changed. 
However, our models seemed to perform relatively 
unsatisfactorily in recognizing dry AMD. To verify 
our AI system’s performance, we also used the OCT 
image dataset employed by Kermany et al. [2] 
containing only images of normal macula, active CNV 
AMD, and dry AMD. We determined that our CNN 
models could identify OCT images of normal macula 
and CNV with sensitivities of 98%–100% (Table 2), 

whereas their sensitivity in identifying dry AMD 
ranged from 74.4% to 90.8% (Table 2). 

 Interestingly, it was clearly seen that the trained 
AI models identified the crucial areas and features 
(e.g., subretinal exudate, sub-RPE lesions) for 
discrimination of image classes correctly (Figure 3). 
To analyze the errors made by the AI, we identified all 
images that were misclassified by the established 
models. Among them, 109 to 122 (33.4% to 38.3%) 
were active wet AMD images misclassified as inactive 
wet AMD, 126 to 158 (44.0% to 44.3%) were dry AMD 
(drusen) images misclassified as inactive wet AMD, 
and 22 to 35 (6.0% to 9.7%) were inactive wet AMD 
images misclassified as active wet AMD. After 
checking these images and heatmaps carefully, we 
found that the AI sometimes misclassified the active 
wet AMD as inactive if subretinal fluid was shallow 
or located at the periphery. Also, the AI has 
misclassified dry AMD (drusen) as inactive wet AMD 
if the drusenoid RPE detachment was large or 
confluent. In relatively rare cases, the AI misclassified 
inactive wet AMD as active wet AMD if the 
neovascular scar was big and the reflective signal of 
OCT was irregular (Figure 4C). 

The accuracy of dry AMD recognition can be 
improved by increasing the number of dry AMD 
images in the training process, which may improve 
the recognition rate by counteracting possible 
learning bias in the AI system caused by the presence 
of drusen in OCT images of active and inactive CNV. 
Another method that could increase the recognition 
rate is by using three models in combination. 
Disputed results could be reanalyzed by specialists, 
similar to the procedure followed when physicians 
disagree in their interpretation of the results. 
However, if no specialist can be found to interpret the 
results, the most severe discrimination results among 
the three models should be considered as the final 
diagnosis, and a patient should be referred to a 
hospital if the condition requires treatment. This can 
reduce ophthalmologists’ workload in terms of 
analyzing OCT images. 

We believe that not only classifying individual 
OCT images, but also detecting changes in disease 
activity are potentially important applications of our 
AI-based technique. The former is useful for screening 
patients, and the latter would be useful in following 
individual patients and advising them on the actions 
to be taken. If a patient has already been diagnosed 
with wet AMD by a clinician, our AI model could also 
be used for monitoring his/her disease activity later 
on. It should be noted that our AI-based software was 
not designed originally for longitudinal analysis, and 
better prediction could be achieved if longitudinal 
information, e.g., labeled time-series of OCT images, 
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was also included in the training and prediction 
model. Fortunately, our results showed that even 
without such design, our model could achieve an 
accuracy rate as high as 95.29% in detecting disease 
activity change from 10 sequenced images. 

 Furthermore, we introduced the concept of 
telemedicine into our platform to ensure that our AI 
system would be widely used. The benefits of 
telemedicine include improving access to medical 
services, providing previously unavailable care 
options, and reducing medical costs [16]. The website 
developed to provide a cloud service based on this AI 
platform is located at https://www.ym.edu.tw/ 
~AI-OCT/. It is accessible to all users, and a 
step-by-step tutorial is provided in Figure S4B. 
Doctors or patients can upload their OCT images and 
immediately obtain information on AMD types and 
treatment recommendations (Figure S7). Even in 
remote places with few medical services, this website 
can help patients access their OCT image reports 
immediately and learn whether they should seek 
further treatment, provided that an optician or a 
general practitioner (e.g., in hospitals without an 
ophthalmologist) with an OCT device is available to 
perform the examination. Another strength of our 
study is that we analyzed images from three different 
OCT devices and resized them to 224 × 224 pixels. 
This can assist the AI system to identify images from 
various types of OCT devices at different medical 
facilities. However, if the image quality is too low, for 
example brightness or sharpness are poor, or the 
format of an image is not jpg or png, the AI may have 
low prediction accuracy or could even not analyze an 
image. Moreover, in several cases, high-quality OCT 
images cannot be obtained due to cataract or other 
ocular conditions, and such cases were excluded from 
our training dataset. In this situation, other factors, 
such as visual symptoms and results from 
ophthalmoscopy, should be considered 
simultaneously for identifying disease activity 
clinically. Although OCT devices have continually 
and greatly improved since they were invented [17], 
the corresponding analytical software has not 
undergone similar progress. Therefore, integrating an 
AI-based image discrimination system into OCT 
devices to provide medical diagnoses and advice 
automatically is appropriate. 

To summarize, this paper proposes AI software 
based on three different CNN models that can 
differentiate normal macula and three AMD types 
and provide treatment recommendations. To 
implement the telemedicine concept, we also 
developed a website with a cloud service based on 
this AI platform. In its present state, the website can 
help doctors and patients who wish to ascertain a 

patient’s AMD status and receive treatment 
recommendations. It should be noted that for OCT 
images with other retinal diseases, such as diabetic 
macular edema and macular dystrophies, our AI 
system might show a wrong diagnosis. Therefore, 
patients need to attend a hospital to perform the OCT 
exam, and the decision on treatment should be based 
not solely on the results from the AI classifier but, 
most importantly, on clinical judgement. However, 
this software can be used in some areas where 
ophthalmologists (especially retinal specialists) are 
scarce and can help the health care provider to decide 
whether the patient should be referred or not. Also, 
our software will suggest the patient to seek medical 
help if active CNV is suspected. The definite diagnosis 
and treatment should be performed by a retinal 
specialist based on the clinical evidence and 
experience. 

Abbreviations 
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