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Abstract 

Human multiple myeloma tumor cell lines (HMCLs) have been a cornerstone of research in multiple myeloma 
(MM) and have helped to shape our understanding of molecular processes that drive tumor progression. A 
comprehensive characterization of genomic mutations in HMCLs will provide a basis for choosing relevant cell 
line models to study a particular aspect of myeloma biology, or to screen for an antagonist of certain cancer 
pathways. 
Methods: We performed whole exome sequencing on a large cohort of 30 HMCLs, representative of a large 
molecular heterogeneity of MM, and 8 control samples (epstein-barr virus (EBV)-immortalized B-cells obtained 
from 8 different patients). We evaluated the sensitivity of HMCLs to ten drugs.  
Results: We identified a high confidence list of 236 protein-coding genes with mutations affecting the structure 
of the encoded protein. Among the most frequently mutated genes, there were known MM drivers, such as 
TP53, KRAS, NRAS, ATM and FAM46C, as well as novel mutated genes, including CNOT3, KMT2D, MSH3 and 
PMS1. We next generated a comprehensive map of altered key pathways in HMCLs. These include cell growth 
pathways (MAPK, JAK-STAT, PI(3)K-AKT and TP53 / cell cycle pathway), DNA repair pathway and chromatin 
modifiers. Importantly, our analysis highlighted a significant association between the mutation of several genes 
and the response to conventional drugs used in MM as well as targeted inhibitors.  
Conclusion: Taken together, this first comprehensive exome-wide analysis of the mutational landscape in 
HMCLs provides unique resources for further studies and identifies novel genes potentially associated with MM 
pathophysiology, some of which may be targets for future therapeutic intervention. 
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Introduction 
Multiple myeloma (MM) is the second most 

widespread hematological cancer; it is characterized 
by the accumulation of malignant plasma cells within 
the bone marrow. 

 
Ivyspring  

International Publisher 



 Theranostics 2019, Vol. 9, Issue 2 
 

 
http://www.thno.org 

541 

Despite the survival improvement brought by 
current treatments, the majority of patients relapses 
and succumbs to the disease with a median survival 
of 6 years [1].  

MM is a highly heterogeneous disease at genetic 
and clinical levels [2–4]. Recent studies, using 
next-generation sequencing, have revealed the 
complex mutational landscape of MM patients as well 
as a considerable intraclonal heterogeneity in 
association with drug resistance and tumor 
progression [5–7]. Given these observations, the 
improvement of MM treatment might come from 
personalized medicine, taking into account the 
patients’ genetic background [6]. 

A major difficulty in advancing the 
understanding of drug resistance in MM is the 
availability of primary tumor cells. MM cells can 
survive for several days of culture, but cannot be 
expanded in vitro for the vast majority of patients. 
This represents a serious limitation for a meaningful 
biological study on the resistance mechanisms. An 
alternative strategy is to use MM cell lines as an 
unlimited source of tumor cells. 

Human multiple myeloma cell lines (HMCLs) 
have been widely used for the understanding of MM 
biology, the identification and validation of target 
genes, and the screening of potential anti-myeloma 
drugs. However, biological studies in MM are often 
performed with a restricted number of HMCLs that 
are poorly characterized at the molecular level and do 
not reflect the heterogeneity of MM patients. In the 
past few years, we have derived a large cohort of 
patient-derived HMCLs that remain dependent on the 
addition of exogeneous MM growth factors, thereby 
reflecting primary tumor conditions [8]. Using these 
myeloma cell lines, we recently described that they 
recapitulate the molecular heterogeneity found in 
MM primary tumors by analyzing the gene 
expression profile [8]. However, the mutational 
landscape of human myeloma cell lines has never 
been described. 

A comprehensive characterization of genomic 
mutations in myeloma cell lines would advance our 
understanding of myeloma pathophysiology and 
could also provide a basis for choosing relevant cell 
line models to study a particular aspect of myeloma 
biology, or to screen for an antagonist of specific 
cancer pathways. 

In this study, we present, for the first time, the 
mutational landscape of human myeloma cell lines. 
We conducted whole-exome sequencing (WES) on 30 
HMCLs, representative of the molecular 
heterogeneity of MM, and 8 control samples 
(EBV-immortalized B-cells from 8 of the same 
patients). We identified a high confidence list of 236 

protein-coding genes with mutations likely affecting 
the structure of the encoded protein. These genes 
include well-known MM drivers such as the tumor 
suppressor TP53, the MAPK pathway (KRAS, NRAS 
and BRAF), the ataxia-telangiectasia mutated (ATM), 
cyclin D1 (CCND1), the RB transcriptional corepressor 
(RB1) and the family with sequence similarity 46 
Member C (FAM46C) [6,9]. Additionally, we 
identified novel mutated genes involved in key 
pathways, including JAK-STAT, PI(3)K-AKT, DNA 
repair and chromatin modifier pathways. 
Interestingly, we found that mutations in KRAS, 
FAM46C, KMT2D, PMS1 and USP6 were significantly 
associated with drug resistance. 

Methods 
Samples 

XGs human myeloma cell lines (HMCLs) were 
obtained as previously described [8]. AMO-1, LP1, 
L363, OPM2, MOLP2, MOLP8, Lopra and SKMM2 
were purchased from DSMZ (Braunsweig, Germany) 
and RPMI8226 from ATCC (American Tissue Culture 
Collection, Rockville, MD, USA). JJN3 was kindly 
provided by Dr. Van Riet (Bruxelles, Belgium) and 
MM1S by Dr. S. Rosen (Chicago, USA). HMCLs were 
authenticated according to their short tandem repeat 
profiling and their gene expression profiling using 
Affymetrix U133 plus 2.0 microarrays deposited in the 
ArrayExpress public database under accession 
numbers E-TABM-937 and E-TABM-1088. HMCLs 
characteristics, obtained from previously published 
analysis results [8], are available in Table S1. 
EBV-immortalized B-cells from 8 different patients 
have been used as control cells. The patients are those 
from whom the XG1, XG3, XG5, XG10, XG13, XG14, 
XG16 and XG19 cell lines were generated. 

WES 
 

WES was performed on 30 HMCLs and 8 control 
samples (EBV-immortalized B-cells from 8 of the same 
patients). We also performed and analyzed the WES 
of purified primary MM cells from 59 patients in 
order to compare mutated genes between HMCLs 
and primary tumor cells. Forty-three newly 
diagnosed patients and patients at relapse (N=16) 
were treated by high-dose chemotherapy plus 
autograft. Lines of treatments of patients at relapse 
were described in Table S2. Bone marrow samples 
were collected after patients’ written informed 
consent in accordance with the Declaration of 
Helsinki and institutional research board approval 
from Montpellier University hospital (DC-2008-417). 

The WES library preparation was done with 1000 
ng of input DNA. Sequences of exome were enriched 



 Theranostics 2019, Vol. 9, Issue 2 
 

 
http://www.thno.org 

542 

using SureSelectxt kit and SureSelectxt All Exons v5 
library (Agilent Technologies, Santa Clara, California, 
USA). Paired-end exome sequencing was performed 
on the enriched exome sequences using the illumina 
NextSeq500 sequencing instrument (Helixio, 
Clermont-Ferrand, France), generating 75 bp 
paired-end reads with 100X average coverage per 
sample. 

Analysis of single nucleotide variants 
The workflow of data analysis is illustrated in 

Figure 1A. Read pairs were mapped to the reference 
human hg19 genome using the Bowtie 2 aligner 
version 2.3.2 [10]. SAMTools version 1.5 [11] was used 
to convert Sequence Alignment Map (SAM) files to 
sorted Binary Alignment Map (BAM) files. Indel 
Realignment and base quality recalibration steps were 
completed with GATK 3.8-1 [12]. BCFtools version 1.5 
[11] was utilized to detect variants from the BAM file 
and outputs into a Variant Call Format (VCF) file. We 
used ANNOVAR version 2017Jul16 [13] to annotate 
the variants. Mutations were determined by applying 
a series of filters on the ANNOVAR output. Firstly, 
we filter out mutations present in control EBV 
(Epstein-Barr Virus) samples and in dbSNP database 
(version 138). Synonymous and intronic variants as 
well as mutations located in segmental duplications 
were removed, along with variants present in greater 
than 1% of the 1000 genome project [14] and/or 
Exome Sequencing Project (ESP6500). Secondly, we 
prioritize mutations by filtering them based on four 
deleterious predictors included in the ANNOVAR 
software (SIFT, PolyPhen2, FATHMM and LRT). 
Variants are considered for further analyses only if 
they are predicted deleterious by at least one of the 
deleterious predictors. Finally, we retain only 
mutations that were present in COSMIC [15] and/or 
OncoKB [16] databases. The MAF (Mutation 
Annotation File Format) file format was used to store 
the genomic mutations of the different cell lines in the 
same file. We used the maftools [17] R/Bioconductor 
package to summarize, analyze and visualize the 
MAF files. Copy Number Variations (CNV) and IgH 
translocations were determined by the CNV-seq 
method [18] and fluorescence in situ hybridization 
(FISH) [8,19], respectively. Significant mutual 
exclusive mutations were assessed with the maftools 
R package [17]. The subclonal heterogeneity was 
inferred by clustering variants according to their allele 
frequencies using maftools R package [17]. The 
subclonal heterogeneity could be inferred by 
clustering variants according to their allele 
frequencies [20,21]. inferHeterogeneity function uses 
density based finite or infinite (dirichlet process) 
mixture models, to cluster and classify variants into 

subclones [22,23]. The presence of different subclones 
are visualized using density plots of variant allele 
fraction VAF. Variants on copy number altered 
regions were excluded. Pathway enrichment analyses 
were performed using the R package ReactomePA 
[24] and Kegg database [25–27]. 

HMCLs response to drug treatment 
HMCLs were cultured in RPMI-1640 medium 

(Gibco, Thermo Fisher Scientific, Waltham, 
Massachusetts, USA) supplemented with fetal bovine 
serum (FBS, Eurobio, Les Ulis, France) (10%) and 
Interleukin 6 (IL6, Peprotech, Rocky Hill, New Jersey, 
USA) for XG cell lines. We evaluated the sensitivity of 
the cell lines to ten drugs, including Bortezomib 
(Euromedex), Melphalan (HAC Pharma), 
Lenalidomide (Selleckchem), Pomalidomide 
(Selleckchem), IKK2 inhibitor (AS602868), CDK 
inhibitor (AT7519 CDK1/2/4/5/6/9i, Selleckchem), 
TSA (Trichostatin A, HDACi, Sigma), SAHA 
(Suberanilohydroxamic acid, HDACi, Selleckchem), 
Panabinostat (HDACi, Selleckchem) and 
Dexamethasone. For a given drug, HMCLs were 
treated with different concentrations. The IC50was 
determined at day 4 using the CellTiter-Glo assay 
(Promega, Madison, Wisconsin, USA), as previously 
described [28,29]. The data represent the mean ± 
standard deviation of three independent experiments 
that were carried out on sextuplet culture wells (Table 
S3). The subset of HMCLs used for analyses were 
characterized, for drug response, in previous studies 
[28,30–34] and selected according to the different 
molecular subgroups previously described by 
transcriptomic analyzes [8]. 

Statistical analyses 
All statistical calculations were carried out using 

the R software (R Foundation for Statistical 
Computing, Vienna, Austria). The classification of 
HMCLs into multiple groups based on their mutation 
profile was done by unsupervised multiple 
correspondence analysis (MCA) and hierarchical 
clustering using the R packages FactoMineR [35] and 
factoextra [36]. Wilcoxon test was used to evaluate the 
significance of the association between mutated genes 
and response to treatment.  

Results 
Landscape of mutations in HMCLs 

We performed WES on 30 HMCLs as well as on 
EBV-immortalized B-cells from 8 patients (used to 
derive 8 XGs cell lines), which are used as control 
cells. However, no cell line represents a hyperdiploid 
subgroup. Two cell lines, XG16 and XG27, are 
characterized by the absence of recurrent 
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translocation. XG16 is characterized by 
chromothripsis, including a huge number of 
chromosomal rearrangements involving localized 
genomic regions; it is associated with poor outcome in 
MM [37].  

First, we sought to identify exonic variants, 
non-synonymous variants and variants predicted to 
be deleterious, as these are the candidates for cancer 
pathogenesis and drug targets. We identified 9570 
non-synonymous exonic mutations in the cell lines, as 
specified in the Methods section. These mutations 
involve a total number of 4743 unique genes. Next, we 
focused on mutations present in COSMIC and/or 
OncoKB databases, which contain previously 
reported, mutated genes in cancers or those having 
oncogenic functions. We identified a high confidence 
list of 236 protein coding genes with mutations 
affecting the structure of encoded protein (Table S4). 
In these genes, we detected 576 variants (range: 8 – 32; 
median: 19 per cell lines), including 468 point 
mutations and 108 insertions/deletions (INDELS). 
The point mutations include 459 missense and 9 
nonsense mutations (Figure S1A-B). Ranking by 
mutation type indicates an excess of C > T transitions 
(Figure S1C). 

As recurrently mutated genes in HMCLs could 
represent novel candidate driver genes in MM 
progression, we investigated the most frequently 
mutated genes in HMCLs. The top 50 most frequently 
mutated genes are illustrated in Figure 1B. 
Twenty-two of the 50 genes were mutated in at least 5 
out of the 30 cell lines (17%). These genes include 
TP53 (47%), CNOT3 (43%), KRAS (37%), KMT2D 
(33%), NRAS (30%), ATM, MN1 and MSH3 (27%), 
FAM46C (23%), KMT2B and SETD2 (20%), and EZH2 
and PMS1 (17%). Importantly, some of these genes, 
TP53, KRAS, NRAS, ATM, and FAM46C, have been 
previously reported to be a target of recurrent 
mutations in newly diagnosed MM patients [6,9]. 
Notably, 86% of the frequently mutated genes in 
HMCLs were also found to be mutated in at least one 
primary tumor sample from myeloma patients 
(Figure 2A-B). One hundred and seventy-nine out of 
the 236 (76%) identified mutations were also 
described in primary MM cells from newly diagnosed 
patients in previous studies [6,9,38,39]. Among them, 
CIC, KRAS and NRAS were the most frequently 
mutated genes in patients and were identified at 
diagnosis (Figure 2A) and relapse (Figure 2B). 
Interestingly, FAM46C mutation was more frequent at 
relapse than at newly diagnosed patients, underlying 
its role as a myeloma driver gene. KMT2D and SETD2 
were mutated only in patients at relapse (Figure 
2A-B). Fourty percent of the mutations identified in 
patients present at a higher frequency in HMCLs, 

including TP53, CNOT3 and KMT2D mutations 
(Table S5). Moreover, variant allele frequency 
analysis of mutated genes revealed that HMCLs 
present one to four subclones, a range that was 
comparable to MM patients samples (Table S6A-B). 
This is consistent with previous results demonstrating 
that HMCLs derived in the presence of IL-6 display a 
molecular heterogeneity which overlaps one of MM 
patients [8].  

Further analyses were performed, using the 22 
frequently mutated genes, to classify HMCLs into 
multiple groups based on their mutational profile. 
Unsupervised MCA followed by hierarchical 
clustering produced 2 major dendrogram branches 
with 5 subgroups (Figure 3A). Group 1 (LP1, OPM2, 
SKMM2, XG26, XG23, XG24, L363, XG1, XG16, XG12, 
and XG13) is mainly characterized by NRAS, CNOT3 
and LRP1B mutated (MUT) and KRAS, MN1, ATM, 
USP6 and KMT2B wild type (WT) genes; group 2 
(XG25 and XG7) is associated with mutations in 
PMS1, USP6, SETD2, KMT2B and FAM46C; group 3 
(RPMI, XG11, XG29, Lopra, XG27, MM1S, AMO1, 
XG20, and XG6) is mainly characterized by the 
presence of mutations in KRAS, ATM and MN1 as 
well as CNOT3 WT; group 4 (XG19, JJN3, XG2, and 
XG28) is characterized by KMT2B mutations; cell lines 
of group 5 (MOLP8, XG5, MOLP2, and XG30) were 
associated with mutations in MAP3K1, EZH2 and 
SETD2 (Figure 3A). We investigated the link between 
the groups defined by the mutational profile and 
major MM cytogenetic abnormalities (Figure 3B). No 
significant association between the molecular 
heterogeneity defined by the mutational profile and 
the recurrent IgH translocations was identified 
(Figure 3B). Del1p, 1q gain, del13q and del17p were 
respectively found in 70%, 50%, 56% and 43% of 
HMCLs. Notably, 10 cell lines are characterized by 
TP53 mutation and del17p underlining HMCLs with 
TP53 bi-allelic event, known to be associated with a 
dramatic impact on survival in MM (Table S1) [40]. 
Furthermore, 5 cell lines are associated with del1p and 
FAM46C mutations double-hit events (Table S1) [40]. 

Mutations in key pathways controlling cell 
growth 

Many canonical pathways known to be involved 
in MM cell survival and proliferation were mutated, 
including JAK-STAT, PI(3)K-AKT and MAPK (Figure 
4A). Mutation of genes involved in the MAPK 
pathway was the most prevalent (25/28 HMCLs, 
89%). In this pathway, the most frequently mutated 
genes were KRAS (39%), NRAS (32%), MAP3K1 (18%) 
and BRAF (11%) (Figure 5A). In addition to these 
recurrently mutated genes, we found occasional 
mutations in other genes involved in MAPK 
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signaling, including MAP2K2 (7%), RAC1 (4%), RAF1 
(4%) and NF1 (4%). Mutations in KRAS and NRAS 
were mutually exclusive (Figure S2A). This suggests 
that mutations occurring simultaneously in these 
genes might be lethal for cancer cells or that the 
second mutation did not confer a selective advantage. 
According to that, KRAS and NRAS mutations could 
represent good candidates for therapies based on 
synthetic lethality. Mutations in the JAK-STAT 
pathway included STAT3 (11%), RUNX1 (11%), 
EPAS1 (7%), JAK3 (7 %) and STAT6 (4%) (Figure 4A 
and 5A). Mutated genes in the PI(3)K-AKT pathway 

include TSC2 (11%), TBX3 (7%), PTEN (7%), IKBKB 
(4%) and TSC1 (3%). Notably, several receptors 
activating these pathways were also mutated, 
including ERBB3 (14%), EGFR (11%) and IGF1R (11%) 
(Figure 4A and 5A). Additionally, mutations in 
p53/cell-cycle pathway were detected in 76% of the 
cell lines (Figure 4B and 5B). The most recurrently 
mutated genes include TP53 (61%), ATM (35%), 
CCND1 (13%), CDKN2A (13%) and RB1 (9%). 
Importantly, mutations in CCND1, TP53 and ATM are 
associated with a negative impact on survival [38]. 

 

 
Figure 1. Analysis workflow and human myeloma cell lines (HMCLs) mutational landscape. (A) Exome sequencing data from MM cell lines and control samples 
EBV-immortalized B-cells were processed in three steps (alignment, variant calling and variant annotation). In order to find mutations, obtained variants were filtered according 
to four criteria described in the methods section. Mutations were prioritized using four deleterious predictors included in the ANNOVAR software (SIFT, PolyPhen2, FATHMM 
and LRT). Mutated genes present in COSMIC and/or OncoKB databases were kept for further analyses. Selected mutated genes were analyzed with the R package MAFtools. 
Pathway enrichment analysis was done with R package ReactomePA and Kegg database. HMCLs were classified into groups based on their mutational profile using the R packages 
FactoMineR and factoextra. (B) Oncoplot of the top 50 most frequently mutated genes in the HMCLs. Colored squares show mutated genes, while grey squares show non 
mutated genes. Each color represents a different type of mutations: missense (green), in frame insertion (red), frame shift deletion (orange), frame shift insertion (yellow), 
nonsense mutations (blue), in frame deletion (purple) and multi hit (black). Percentages above the heatmap represent mutation rate among all cell lines presenting at least one 
mutated gene of the tested gene list. N is the number of cell lines mutated for a given gene. 
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Figure 2. Frequently mutated genes in HMCLs shared with MM patients at diagnosis and relapse. Exome-seq data of 59 MM patients including 43 newly diagnosed 
and 16 relapsing were processed with the analysis workflow. (A) Oncoplot of frequently mutated genes in HMCLs (N >= 5) shared with patients at diagnosis. (B) Oncoplot of 
frequently mutated genes in HMCLs (N ≥ 5) shared with patients at relapse. Eleven patients without detectable mutations were not included in the figure. N is the number of 
patients mutated for a given gene. 

 
Figure 3. Classification of HMCLs into groups. (A) HMCLs were classified into multiple groups based on their mutation profile using multiple correspondence analysis 
followed by hierarchical clustering. The dendrogram shows five sub-groups with associated mutations. (B) HMCLs characteristics. Heatmap showing main CNV and 
translocations in MM for all cell lines. Blue squares, unlike grey squares, show the presence of the feature in the cell line. 
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Figure 4. Mutations in key pathways controlling cell growth. (A) 
Representation of mutated genes in the JAK-STAT pathway, PI(3)K-AKT pathway, 
MAPK pathway and receptors. Mutated genes are shown in squares. Gene names in 
light grey color are non-mutated. (B) Representation of mutated genes involved in 
cell cycle. 

 

Mutations in DNA repair pathways 
DNA repair is one of the most important 

biological mechanisms involved in cancer 
development and drug resistance [41]. Depending on 
the type of DNA damage, specific DNA repair 
pathways are used to restore genetic information. 
Base excision repair (BER), nucleotide excision repair 

(NER) and mismatch repair (MMR) operate on 
nucleotide lesions occurring on single strands. For 
double-strand breaks, there are two major pathways, 
including non-homologous end-joining (NHEJ) and 
homologous recombination (HR). The alteration of 
DNA repair pathways can promote tumorigenesis 
and can induce drug resistance. Notably, multiple 
lines of evidence underlie the close link between DNA 
damage repair pathways and response to treatment in 
MM as well as patients’ survival [38,42,43]. Our 
analysis revealed mutations in 16 DNA repair genes 
(Figure 6A and 7A). ATM is the most frequently 
mutated DNA repair gene (MR: 38%), mainly with 
missense mutations. Other frequently mutated DNA 
repair genes include MSH3 (38%; in frame insertion, 
frame deletion and missense), PMS1 (24%; missense 
and frame shift insertion) and FANCG (10%; 
missense). In addition to these recurrently mutated 
genes, we found occasional mutations in other key 
genes: TP53BP1, BLM, BRCA1, ERCC4, FANCA, 
FANCD2, FANCF, MLH1, MUTYH, PMS2, WRN and 
XPA (Figure 6A and 7A). 

Mutations in epigenetic modifiers 
Our analysis revealed mutations in several 

chromatin-modifying or chromatin-regulatory key 
genes, including histone demethylases (KDM5C, 
KDM5A, and KDM6A), histone methyltransferases 
(KMT2A/B/C/D, EZH2, and SETD2), genes in 
polycomb complex (ASXL1/L2 and MGA) and 
SWI/SNF chromatin remodeling complex (ARID1A 
and ARID1B). KMT2D, KMT2B, SETD2, ARID1B and 
EZH2 were the most frequently mutated genes with 
various types of alterations (Figure 6B and 7B).  

Evaluating the association between HMCL 
mutation profile and response to treatment 

We analyzed the relationship between the 
mutational status of HMCLs and response to 
conventional drugs in MM (Bortezomib, Melphalan, 
Dexamethasone and IMiDs) as well as targeted 
inhibitors (HDAC, CDK and IKK inhibitors). Three 
pan-HDAC inhibitors have been tested, including 
Panobinostat, SAHA and TSA.  

Importantly, we found a significant (p-value < 
0.05) association between several key mutated genes 
and resistance to drugs, including Panobinostat 
(FAM46C and KRAS), Dexamethasone (KMT2D), TSA 
(PMS1) and SAHA (USP6) (Figure 8A).  

Additionally, other gene mutations were 
significantly (p-value < 0.05) related to drug 
sensitivity, including Lenalidomide (KMT2D and 
TP53) and Panobinostat (TP53) (Figure 8B). Recently, 
Sievers et al. described key proteins required for the 
anti-myeloma effects of IMiDs using a CRISPR-Cas9 
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screen [44]. Investigating mutations in the network 
involved in IMiDs activity, we identified mutations of 
CAND1, IKZF1, IKZF3, NCOR1, EDC4, PPP6C, 
UBE2D3 and UBE2M in our panel of cell lines (Figure 
9A-B). Of major interest are HMCLs with a mutation 
of at least one of these genes that exhibited a 
significant, 5.4-fold higher resistance to 
pomalidomide (Figure 9B). 

Taken together, this analysis has highlighted key 
genes with potential importance in drug resistance in 
MM. Further biological studies will be needed to 
understand the role of these genes in MM cell 
response to treatment.  

Discussion 
HMCLs are invaluable biomedical research tools 

that have been extensively used to understand MM 
physiopathology as well as for drug screening. In this 
study, we report, for the first time, the mutational 
landscape of the largest HMCLs cohort to date, which 
is a representative of the large molecular spectrum of 
the disease. We identified a list of 236 mutated 

protein-coding genes, including genes involved in 
critical pathways such as MAPK (KRAS, NRAS, 
MAP3K1 and BRAF) (Figure 4A and 5A), JAK-STAT 
(RUNX1, STAT3, EPAS1, JAK3 and STAT6) (Figure 4A 
and 5A), PI(3)K-AKT (PTEN, TSC1/2, TBX3 and 
IKBKB) (Figure 4A and 5A), TP53/cell cycle (TP53, 
CCND1, CDKN2A and RB1) (Figure 4B and 5B), DNA 
repair pathways (ATM, MSH3, PMS1 and FANCG) 
(Figure 6A and 7A) and chromatin modifiers 
(KMT2D, KMT2B, SETD2, ARID1B and EZH2) (Figure 
6B and 7B), as well as in growth factor receptors 
(ERBB3, EGFR and IGF1R) (Figure 4A and 5A). 

Importantly, among the most recurrently 
mutated genes in HMCLs, there were the previously 
identified genes in primary MM cells, including TP53 
(47%), KRAS (37%), NRAS (30%), ATM (27%) and 
FAM46C (23%) (Figure 1B)[6,9]. Mutations in 
CCR4-NOT Transcription Complex Subunit 3 
(CNOT3, 43%) and the Lysine Methyltransferase 2D 
(KMT2D, 33%) also appear at high frequencies, 
highlighting their potential importance in MM tumor 
progression.  

 

 
Figure 5. HMCLs mutational portrait for genes involved in cell growth. (A) Oncoplot of all proliferation-mutated genes. Twenty-eight cell lines out of 30 have at least 
one mutated gene belonging to the proliferation group. (B) Oncoplot of all cell cycle mutated genes. Twenty-three cell lines out of 30 have at least one mutated gene belonging 
to the cell cycle group. 
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Figure 6. Mutations in DNA repair pathways and epigenetic factors. (A) Representation of mutated genes in the main DNA repair pathways. Mutated genes are shown 
in filled ellipses. (B) Representation of mutated epigenetic factors according to the type of epigenetic modifications they generate. 

 
CNOT3 is part of the CCR4-NOT complex, which 

is one of the major deadenylases in eukaryotes. Thus, 
CNOT3 plays an important role in mRNA stability 
regulation [45]. Moreover, CNOT3 has been shown to 
contribute in early B cell development through the 
regulation of p53 mRNA stability and Igh 
rearrangement [45]. In addition, CNOT3 has been 
identified as a tumor suppressor in T-ALL [46].  

KMT2D has recently emerged as one of the most 
frequently mutated genes in a variety of cancers [47]. 
Additionally, KMT2D is involved in normal B cell 
differentiation; KMT2D deregulation promotes 
lymphomagenesis [48]. Mutations in KMT2D 
identified thus far point to its loss-of-function in 
pathogenesis and suggest its role as a tumor 

suppressor in various tissues. Previous studies 
support that KMT2D has distinct roles in neoplastic 
cells, as opposed to normal cells, and that inhibiting 
KMT2D may be a viable strategy for cancer 
therapeutics [47,48].  

Other novel mutated genes with potential 
importance in MM biology include PTPRD (Protein 
Tyrosine Phosphatase, Receptor type D, 23%) (Figure 
1B), LRP1B (LDL Receptor-Related Protein 1B, 23%) 
(Figure 1B), SETD2 (SET Domain Containing 2, 20%) 
(Figure 1B, 6B and 7B), EZH2 (Enhancer of Zeste 2 
Polycomb Repressive Complex 2, 17%) (Figure 1B, 6B 
and 7B) and FANCG (FA Complementation Group G, 
7%) (Figure 6A and 7A). PTPRD is a protein tyrosine 
phosphatase signaling molecule that is known to be 
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involved in oncogenic transformation. It has been 
reported as frequently lost in many cancers and is 
associated with tumor-suppressor activity [49]. LRP1B 
belongs to the low-density lipoprotein (LDL) receptor 
family. LRP1B is a putative tumor suppressor and 
LRP1B silencing has been observed in renal and 
thyroid cancers [50,51]. Mutations in SETD2 have 
been found in 12% of B-cell acute lymphoblastic 
leukemia and in a range between 1% and 2% of B-cell 
lymphoma; they have also been found in chronic 
lymphocytic leukemia and acute myeloid leukemia 
(AML) [52]. More recently, SETD2 mutations were 
also reported in MM [39]. This gene has a key role in 
DNA repair since it is required for DNA mismatch 
repair and for DNA double-strand break repair 

[53,54]. Moreover, it has been shown that SETD2 
mutations lead to resistance to DNA-damaging agents 
in leukemia [55]. EZH2 (Enhancer of Zeste 2 
Polycomb Repressive Complex 2) is known to be 
deregulated in MM [56]. Recently, few studies 
highlighted the interest to target EZH2, with or 
without being associated with other drugs such as 
Bortezomib or IMiDs, to overcome MM drug 
resistance [30,57,58]. FANCG is involved in Fanconi 
anemia, a disorder that is characterized by an 
impaired bone marrow function and that predisposes 
to AML [59]. Furthermore, high expression of Fanconi 
anemia genes is associated with poor prognosis in B 
cell malignancies, including MM [42,60]. 

 

 
Figure 7. HMCLs mutational portrait for genes involved in DNA repair pathways and epigenetic factors. (A) Oncoplot of all DNA repair mutated genes. 
Twenty-one cell lines out of 30 have at least one mutated gene belonging to DNA repair pathway. (B) Oncoplot of all mutated epigenetic factors. 
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Altogether, these data underline mutations of 
reported tumor suppressor genes that may play a key 
role in MM progression. It will be of interest to 
investigate multi-omics analyses integrating 
RNA-seq, mutations and single nucleotide 
polymorphisms (SNP) analyses to identify significant 
associations between genetic abnormalities in this 
large cohort of MM cell lines. 

Interestingly, our analysis reveals that HMCLs 
present one to four subclones, a range that is similar to 
primary tumor samples (Table S6A-B). These results 
suggest that HMCLs can be used to study the effect of 
MM treatments on subclonal evolution, which is 
critical to understand the mechanisms underlying 
relapse from chemotherapy and drug resistance. In 
this context, analysis of the subclonal composition 
and phylogenetic pattern of the HMCLs at single cell 
level will be of particular interest [61]. 

It is noteworthy that our analysis highlighted 
mutual exclusive mutations in HMCLs between KRAS 
and NRAS, implying that they did not occur together 
in the same cell lines. Mutual exclusivity is important 
for the understanding of cancer progression and 
functional relationships between the alterations. 
Moreover, genes mutated in a mutually exclusive 
fashion can be interesting for targeted treatment 
through a synthetic lethality approach [62]. 

We also identified 10 HMCLs characterized by 
TP53 bi-allelic events and 5 HMCLs presenting del1p 
and FAM46C mutation double hits (Table S1). These 
cell lines represent a potent model to identify 
therapeutic strategies in order to improve the survival 
of patients characterized by these bi-allelic 
inactivations and poor outcome [40]. 

HMCLs are potent tools not only to study 
molecular mechanisms underlying MM but also for 
first-line tests to decipher drug effects on MM cells. In 
this study, we found a significant association between 
mutated genes and drug resistance or sensitivity. 
These genes include FAM46C, KMT2D, KRAS, PMS1, 
USP6 and TP53 (Figure 8A-B). Further studies are 
needed to validate their biological role in treatment 
response. FAM46C is described as one of the most 
frequently mutated genes in MM in several studies 
and its function is largely unknown [63]. Recently, it 
has been described as a potential onco-supressor and 
a non-canonical poly(A) polymerase specific to B-cell 
lineage [63]. Furthermore, double-hit events involving 
FAM46C are associated with poor outcome in MM 
patients after relapse [40]. FAM46C mutation was 
associated with higher resistance of HMCLs to 
Panobinostat, an histone deacetylase inhibitor 
(HDACi). HDACi are known to activate NFκB 
through inhbition of HDAC3-mediated deacetylation 

of the p65/RelA NFκB subunit 
[64]. This NFκB activation by 
HDACi participated in the 
biological rationale of combining 
HDACi with proteasome 
inhibitors in MM [65]. According 
to that, MM cells with FAM46C 
mutations could be associated 
with lower dependence on NFκB 
pathway. Notably, we also found 
significant associations between 
TP53 mutations and sensitivity to 
Panobinostat and Lenalidomide 
(Figure 8B). These data 
underlined previous observations 
indicating that MM cells sensitive 
to Panobinostat are significantly 
enriched in genes related to high 
tumor metabolism and growth 
compared to resistant ones 
associated with a more quiescent 
state [28]. TP53 bi-allelic event is 
also associated with a dramatic 
impact on survival in MM patients 
after relapse, whereas TP53 
mutations were not associated 
with a prognostic impact [40]. The 
higher sensitivity of TP53 mutated 

 

 
Figure 8. Association between mutated genes and drug response. HMCLs have been treated with a 
conventional drug used in MM (Dexamethasone, IMiDs) and targeted inhibitors (TSA, SAHA, and Panobinostat). For 
a given drug, bar plots are the IC50 of the drug according to the mutated genes. The IC50 values in cell lines were 
compared using Wilcoxon test. (A) Mutated gene associated with drug resistance. (B) Mutated genes associated with 
drug sensitivity. N is the number of cell lines tested with a given drug and involved in the statistical test. * : p-value < 
0.05, ** : p-value < 0,01. Error bars represent mean standard deviation. 
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HMCLs to Panobinostat HDACi and Lenalidomide 
could be of clinical interest in MM patients with TP53 
MM driver mutations. Furthermore, mutations in 
genes required for IMiD-mediated CRL4CRBN activity 
[44] have been found to be associated with significant 
resistance to pomalidomide in our panel of HMCLs. 
These genes included IKZF1 and IKZF3 that are 
ubiquitinated and degraded by CRL4CRBN, CAND1 
and UBE2M cullin-RING ligase regulators, UBE2D3 
E2 ubiquitin-conjuating enzyme and other genes of 
unclear function (PPP6C, NCOR1 and EDC4) (Figure 
9). These data illustrate the mechanistic importance of 
acquired mutations in known genes required for 
IMiD-mediated toxicity and could open new avenues 
of therapies aimed at overcoming these processes. 

Conclusions 
In summary, this study provides a 

comprehensive map of mutations in HMCLs. Our 
data provide unique resources for further studies and 
could help identify novel, critical genes and pathways 
potentially associated with MM progression. The 
determination of actionable mutations potentially 

associated with drug resistance/sensitivity may open 
the way for alternative targeted treatments. 
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Figure 9. Association between mutated genes involved in the cereblon pathway and resistance to Pomalidomide. (A) Representation of mutated genes 
involved in IMiD-mediated CRL4CRBN activity. Mutated genes are shown in filled ellipses. (B) Seven HMCLs presenting missense mutations of genes involved in the cereblon 
pathway as well as six HMCLs without mutations (WT) have been treated with Pomalidomide. IC50 of Pomalidomide for each tested HMCL is shown in the table below the 
heatmap. IC50 of mutated (Mut) and wild type (WT) HMCLs were compared using Wilcoxon test. * : p-value < 0.05. Error bars represent mean standard deviation. 
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