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Abstract 

Wound healing is strongly associated with the presence of a balanced content of reactive species in 
which oxygen-dependent, redox-sensitive signaling represents an essential step in the healing 
cascade. Numerous studies have demonstrated that cold physical plasma supports wound healing 
due to its ability to deliver a beneficial mixture of reactive species directly to the cells.  
Methods: We described a preclinical proof-of-principle-concept of cold plasma use in a dermal, 
full-thickness wound model in immunocompetent SKH1 mice. Quantitative PCR, Western blot 
analysis, immunohistochemistry and immunofluorescence were perfomed to evaluate the 
expression and cellular translocation of essential targets of Nrf2 and p53 signaling as well as 
immunomodulatory and angiogenetic factors. Apoptosis and proliferation were detected using 
TUNEL assay and Ki67 staining, respectively. Cytokine levels in serum were measured using 
bead-based multiplex cytokine analysis. Epidermal keratinocytes and dermal fibroblasts were 
isolated from mouse skin to perform functional knockdown experiments. Intravital fluorescence 
analysis was used to illustrate and quantified microvascular features.  
Results: Plasma exerted significant effects on wound healing in mice, including the promotion of 
granulation and reepithelialization as a consequence of the migration of skin cells, the balance of 
antioxidant and inflammatory response, and the early induction of macrophage and neutrophil 
recruitment to the wound sites. Moreover, through an early and local plasma-induced p53 inhibition 
with a concomitant stimulation of proliferation, the upregulation of angiogenetic factors, and an 
increased outgrowth of new vessels, our findings explain why dermal skin repair is accelerated. The 
cellular redox homeostasis was maintained and cells were defended from damage by a strong 
modulation of the nuclear E2-related factor (Nrf2) pathway and redox-sensitive p53 signaling.  
Conclusions: Although acute wound healing is non-problematic, the pathways highlighted that 
mainly the activation of Nrf2 signaling is a promising strategy for the clinical use of cold plasma in 
chronic wound healing. 

Key words: Nrf2; p53; plasma medicine; reactive species; redox regulation; wound healing 

Introduction 
Physiological tissue repair is orchestrated by the 

interaction of macrophages, platelets, neutrophils, 
fibroblasts, keratinocytes, and endothelial cells, and 
their activation of regulatory pathways that promote 
healing [1]. The major phases of wound healing – 

inflammation, formation of granulation tissue, and 
reepithelialization, together with tissue remodeling – 
require the finely tuned regulation of cellular 
dynamics and protein expression. The third, and 
sometimes underappreciated, pillar in wound healing 
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is redox control. The endogenous generation of 
oxidants leads to reversible oxidative modifications 
on thiol groups, which contribute to physiological or 
pathological stages of wound healing [2]. In chronic 
wounds, there is evidence of a misbalanced cellular 
redox level [3, 4]. This modulates apoptosis [5], 
decreases the expression of angiogenetic growth 
factors [6], impairs neovascularization [7], and 
prolongs inflammation [8], for instance, in diabetic 
wounds [9]. Several downstream targets of the 
transcription factor p53 contribute to the regulation of 
cellular reactive species levels and play a major role in 
the cellular signaling network [10]. Depending on 
species concentration, p53 activates both pro-oxidants 
promoting autophagy and antioxidant responses [11] 
to regulate cell repair, senescence, DNA damage 
recognition, proliferation, and migration [12]. Several 
antioxidants and enzymes are partially sufficient to 
stimulate the nuclear erythroid-related factor 2 (Nrf2) 
pathway in skin, leading to an increase in glutathione 
content, thereby improving the quality of the skin [13] 
and healing responses [14]. Hence, wound healing is 
subject to redox control [15].  

Cold physical plasma is a partially ionized gas 
and a potent source of a multitude of gaseous reactive 
oxygen species (ROS) and nitrogen species (RNS) [16]. 
Consequently, cold plasma modulates numerous 
cellular processes related to redox signaling and may 
be useful for targeting a plethora of specific, wound 
healing-related pathways [17, 18]. In addition to 
several rodent studies [19-22], patients with chronic 
wounds and ulcers have also benefited from clinical 
plasma therapy [23, 24].  

Notwithstanding the clinical success of 
exogenous reactive species therapy using cold 
plasmas, there is limited direct evidence and 
molecular understanding as to how reactive species 
may be used to trigger the appropriate redox 
signaling pathways to improve healing. As such, we 
utilized a murine full-thickness ear incision model to 
investigate early and late stage effects of plasma 
treatment in wounds. A number of targets were 
identified from gene and protein expression profiling 
that concomitantly regulated accelerated wound 
healing. Nrf2 and p53 signaling pathways were 
shown to be key factors in these responses.  

Materials and Methods 
Animals and wounding 

A total of 113 SKH1-hr hairless 
immunocompetent mice (Charles River Laboratories, 
Sulzfeld, Germany) were housed under standard 
conditions in an animal facility (Medical Faculty of 
University of Rostock, Rostock, Germany). Wounding 

on both ears using a microscissor was performed, as 
previously described by removing of upper epidermal 
and dermal layer [22]. The area of the full-thickness 
dermal wound was ~3 mm². The present 
immunocompetent ear wound model is well-suited as 
a model system of acute physiological wound healing 
in humans due to the predominantly 
reepithelialization by migration and the absence of 
muscle contraction [12, 25-27]. All experiments were 
approved by the local ethics committee according to 
the guidelines for care and use of laboratory animals 
(7221.3-1-013/14 and 044/16) and to the NIH Guide 
for the Care and Use of Laboratory Animals.  

Exposure to cold physical plasma and wound 
closure measurements 

An atmospheric pressure argon plasma jet 
(kINPen; neoplas tools, Greifswald, Germany) was 
used, which ionized a flow (5 standard liters per 
minute) of argon gas (purity 99.9999; Air Liquide, 
Krefeld, Germany) at 1 MHz. Plasma treatment of 
wounds was performed using the tip of the plasma 
effluent at a constant distance of 8 mm using a 
autoclavable spacer. Ear wounds were treated for 3 s 
or 20 s or with hydrogen peroxide (H2O2, 1 mM; 
Sigma-Aldrich, Traunstein, Germany). Treatment was 
administered three times per week with plasma or a 
placebo (argon gas alone) or were left untreated (ctrl) 
over 6 (thrice in total; only females) or 14 (six times in 
total) consecutive days (Figure S1). An overview of 
experimental design including the number of animals 
in all experimental groups is given (Table 1). The 
study protocol and number of animals were in part 
specificied by the local ethics committee. 
Reepithelialization and wound closure were studied 
by stereomicroscopy (Leica Microsystems, Wetzlar, 
Germany) on the day of wounding (d0) and every 
third day after thereafter.  

Homogenization of ear tissue and expression 
analysis  

Homogenization. For expression analysis, tissue 
from right ears was collected at day 6 and 15. Briefly, 
fresh tissues from ears were removed, snap-frozen in 
liquid nitrogen, and stored at -80°C. Homogenization 
was performed in RNA lysis buffer (Bio&Sell, Feucht, 
Germany) for gene expression analysis, or in RIPA 
buffer containing protease and phosphatase inhibitors 
(cOmplete Mini, phosSTOP, PMSF, Sigma-Aldrich, 
Traunstein, Germany) for protein validation 
experiments using a FastPrep-24 5G homogenizator 
(MP biomedicals, Heidelberg, Germany).  

mRNA analysis. Total RNA was purified 
according to the manufacturer’s instructions 
(Bio&Sell, Feucht, Germany) and RNA quality was 
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evaluated using Bioanalyzer 2010 (Agilent, Santa 
Clara, CA, USA). For quantification of mRNAs by 
quantitative PCR (qPCR), 1 μg of RNA was 
transcribed into cDNA and qPCR was conducted in 
duplicate using SYBR Green I Master (Roche 
Diagnostics, Basel, Switzerland). Gene specific 
primers were used from BioTez (Berlin, Germany) as 
shown (Table S1). The housekeeping gene GAPDH, 
whose expression was unaffected by plasma, was 
used as an internal control for normalization. Gene 
expression was analyzed using the ∆∆CT method.  

Protein analysis. Protein targets were validated on 
the basis of their significance within the main cellular 
responses. These included molecules of the 
Nrf2-pathway (e.g. HO-1 and Nqo1) as well as 
antioxidative response targets such as Sod1, Cat, 
Trxr1, Prdx6, KGF, Akt, and phospho-Akt (p-Akt). 
GAPDH served as housekeeping protein (all Cell 
signaling, Frankfurt/Main, Germany). Western blot 
analysis was performed using WES according to the 
manufacturer’s instructions. Band intensities were 
quantified using ImageQuantTL Software (GE 
Healthcare, München, Germany), and expressed as 
fold change compared to the corresponding control. 
Blood serum was collected retrobulbary in 
EDTA-tubes at days 0 and 15, centrifuged, and stored 
until use at -80 °C. Cytokine levels in serum were 
measured using bead-based multiplex cytokine 
analysis (BioLegend, San Diego, USA) according to 
the vendor’s protocol, acquired on a CytoFlex S flow 
cytometer (Beckman-Coulter, Indianapolis, IN, USA) 
and analyzed using LegendPlex software 8.0 
(VigineTech, San Diego, CA, USA).  

Cell culture and knockdown of NRF2 and 
KEAP1 by short interfering RNA (siRNA) 

To evaluate the effect of cold plasma on cellular 
translocation of Nrf2, dermal fibroblasts and 
epidermal keratinocytes (Figure S2A) were isolated 
from SKH1 skin (n = 6) and cultivated over 14 days in 
a keratinocytes or fibroblasts EMEM medium 
(PromoCell, Heidelberg, Germany) at 37°C with 5% 
CO2 in a humidified incubator.  

In knockdown experiments, siRNAs (1 µg) 
targeting Nrf2 and Keap1 were transfected into 
keratinocytes using Effectene (Qiagen, Hilden, 
Germany) transfection reagent according to the 
respective protocol [28]. Knockdown of both genes 
was validated by semi-quantitative PCR (Figure S2B) 
and by qPCR. Seventy-two hours after transfection, 
cells were plasma-treated for 60 s and incubated for 20 
min prior to down-stream investigations. A 
non-targeting siRNA (scRNA) was used as a negative 
control, and a GFP plasmid was employed to 
determine transfection efficacy (Figure S2C).  

Histological and immunohistochemical 
analyses  

On days 6 and 15, wound regions of the left ears 
and organs such as lungs, brains, spleens, and livers 
were collected and fixed in 4 % paraformaldehyde 
(Sigma-Aldrich, Traunstein, Germany) overnight. 
Paraffin blocks were cut into 5 µm-sections using a 
microtome to retrieve tissue sections that were stained 
with hematoxylin and eosin (H&E; Carl-Roth, 
Karlsruhe, Germany). Collagen fibers were visualized 
using picrosirius red (Direktrot 80, Sigma-Aldrich, 
Traunstein, Germany) as described [29]. 

Identification of myeloid cells. Macrophages 
(including Kupffer cells) were labeled with an 
anti-F4/80 antibody (#14-4801; Affymetrix, 
Frankfurt/Main, Germany). In wounds and spleens, 
neutrophils were identified with an anti-Ly6G 
antibody (#14-5931; Affymetrix, Frankfurt/Main, 
Germany). After washing, sections were incubated 
with an immuno-peroxidase polymer (N-Histofine 
staining reagent; Medac, Germany) or with a 
secondary antibody coupled to an Alexa-Fluor 594 
dye (Life Technologies, Darmstadt, Germany).  

Detection of proliferation and apoptosis. Ki67 
labeling of proliferating cells (IHC-00375, Biomol, 
Hamburg, Germany) was performed in 
paraffin-embedded ear tissue sections according to 
the vendor’s instructions. Terminal deoxynucleotidyl 
transferase (TdT) dUTP Nick-End Labeling (TUNEL) 
assay (Roche, Basel, Switzerland) was used to detect 
late apoptotic cells known to have fragmented DNA. 
In both stainings, Hoechst 33243 (Sigma-Aldrich, 
Traunstein, Germany) was used to counterstain 
nuclei.  

Microscopy and data evaluation. Stained sections 
were mounted onto glass microscope slides using a 
mounting medium (VectaShield; Biozol, Eching, 
Germany) prior to analysis using an Axio Observer 
Z.1 (Zeiss, Jena, Germany). At least three to five fields 
of view (FOV) were analyzed per animal and ear 
wound. As a reference point, a standard 20 × 
microscope objective has a resolution of ~0.8 μm and 
an FOV of ~5 × 10−2 mm2 and was used for our 
analyses [30]. Proliferative (Ki67 positive, red), and 
apoptotic (TUNEL positive, green) cells were counted, 
and the ratio between green or red nuclei over the 
total number of nuclei (Hoechst, blue) was calculated 
in three directly neighboring FOV within the wound 
granulation tissue. Macrophages (F4/80 positive) and 
neutrophils (Ly6G positive) were quantified as 
density and are given as n/n of Hoechst in a FOV 
(number of red cells / number of Hoechst cells in the 
same area). All quantification were analyzed using Fiji 
macro collection for ImageJ software. By using 
qualitative scores between 1 to 5 (1 = none, 2 = 
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minimal, 3 = moderate, 4 = pronounced, 5 = 
high/complete) collagen patterns, inflammation, 
granulation, angiogenesis, and apoptosis were 
analyzed in paraffin-embedded sections within three 
to five FOV (Table 2).  

Intravital fluorescence analysis of blood vessel 
formation  

After retrobulbar injection of 0.1 mL 
phosphate-buffer saline containing 2% fluorescin 
isothiocyanate (FITC)-labeled dextran (150 kDa; 
Sigma Chemicals, Deisenhofen, Germany) for the 
visualization of blood vessels, the angiogenetic effects 
of plasma treatment (only for 20 s) were analyzed in 
wound ear regions on days 6 and 15. An intravital 
fluorescence epi-illumination microscope (IVM, 
Axiotech Vario; Zeiss, Jena, Germany) was used and a 
qualitative scoring of newly formed blood vessels was 
completed. For quantitative measurements of 
angiogenesis and neovascularization, FITC-dextran 
stained microvessels were analyzed with IVM (Figure 
6AIII). Functional microvessel density (FMD), 
defined as the total length of microvessels per FOV 
(cm/cm²), as well as radial and circular capillary 
diameter were assessed in up to three images using 
ImageJ software [26, 31].  

Statistical analysis 
All experiments were done with tissue of 3-9 

animals per group. In vitro assays were repeated three 
times independently. Values give mean + S.D. If not 
indicated otherwise, and data were statistically 
compared with p values indicated by *p<0.05, 
**p<0.01, or ***p<0.001. Graphics and statistical 
analysis were performed with prism 7.04 (GraphPad 
software, San Diego, CA, USA) using unpaired 
Student’s t test or one-way ANOVA (for 
angiogenesis). 

Results 
Cold plasma promoted wound closure 
depending on treatment time  

We examined the cold plasma’s potential to 
promote reepithelialization in our mouse model of 
dermal full-thickness ear wounds (Figure S1A-B). 
Mice either received treatments three-times per week 
or were left untreated (ctrl) over 6 and 14 consecutive 
days after wounding (Table 1). Wound closure 
kinetics suggested improved healing in the 
plasma-treated wounds compared to the non-treated 
wounds (Figure 1A-B). Quantitative analysis showed 
significantly accelerated wound closure beginning on 
day 3 in females (right) and on day 6 in males (left, 
Figure 1C). A near-complete reepithelialization 
(92-98 %) was achieved on day 12 without scar 

formation (Figure S1C). On day 15 post wounding, 
the thickness of the newly formed epidermal layer 
was comparable in all experimental groups (Figure 
1D), suggesting normal, physiological healing among 
all groups. Placebo treatment with argon gas (data not 
shown) and hydrogene peroxide controls were similar 
in range as untreated controls (Table S2).  

 

Table 1: Overview of experimental groups, treatment regimes, 
time of sacrifice after wounding, and gender (d, day; s, seconds). 
Primary cells (e.g., keratinocytes and fibroblasts) were isolated 
from the skin of ten males and cultivated over four weeks as 
described in material and methods. 

Groups Day (d) of 
tissue 
collection 

Treatment regime Male♂ Female♀ 

3 s plasma d3 3 s for two times (d0, d3) - 3 
ctrl  0 s - 3 
3 s plasma d6 3 s (3x on d0, d3, d6) - 4 
20 s plasma  20 s (3x on d0, d3, d6) - 3 
ctrl  0 s 10 11 
3 s plasma d15 every 3rd d over 14 d (6x) 10 13 
20 s plasma  every 3rd d over 14 d (6x) 9 12 
H2O2 (1 mM) d15 every 3rd d over 14 d (6x) 9 8 
argon (0, 3, 20 s) d15 every 3rd d over 14 d (6x) - 9 
primary cells - - 6 3 

 
Healing responses were examined by scoring of 

five parameters (Table 2) that include tissue collagen 
patterns (distribution, fiber orientation, early and 
mature collagen, amount of collagen), inflammation 
(inflammatory infiltrate), granulation (granulation 
tissue, cell accumulation, cell migration), angiogenesis 
(blood vessel formation, vascularization), and 
apoptosis (blebbing, shrinking, condensation). Each of 
the five parameters was graded from 1 (worst 
regarding healing) to 5 (best regarding healing) on 
days 6 and 15, and included the following features for 
each score: lack of healing response, absence of 
collagen fibers, high inflammatory infiltrate, absence 
of granulation tissue, no blood vessel formation and 
apparent apoptosis (score 1); thin epithelialization, 
scanty collagen fiber formation and granulation, 
marked inflammation with presence of immune cells, 
mild microvessel formation, and pronounced 
apoptosis (score 2); moderate collagen deposition, 
granulation, inflammation, microvessel formation, 
and apoptosis (score 3); pronounced collagen 
deposition, mild inflammation, profound granulation 
and blood vessel formation, and mild apoptosis (score 
4); and complete wound closure with plenty of 
collagen fibers, absence of or minimal inflammation, 
profound tissue granulation, apparent angiogenesis, 
and lack of apoptosis (score 5).  

Overshooting collagen is the main reason for 
fibrosis [32]. At the early time point (d6), picrosirius 
red (PSR)-stained fibers were increased in all 
plasma-treated groups (Figure 1D, right diagram). 
Although the accumulation of collagen fibers 
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appeared regularly ordered with multiple 
orientations within the dermal layers (Figure S1D), 
evaluation on day 15 revealed a significant increase 
(score 3.9) especially for 20 s of plasma treatment 
(Figure 1D, left and middle diagram). For tissue 
granulation and inflammatory infiltrate, no significant 
differences were observed on day 15 in contrast to day 
6. The mean inflammation score was 4.8 (3 s) and 4.4 
(20 s) in plasma-treated groups. Based on evaluation 
of cell accumulation and cell migration the mean 
granulation score was 2.5 for both plasma-treated 

groups. Apoptosis was less pronounced upon plasma 
treatment (score 2.9 for 3 s and 2.7 for 20 s) compared 
to the control group (score 1) on day 6. Importantly, 
formation of new blood microvessels (microvessel 
outgrowth) was marginally but significantly 
increased in plasma-treated animals with a score of 
3.4 (3 s) and 3.1 (20 s) in contrast to controls (2.1). The 
majority of features for plasma-treated animals scored 
significantly better compared to controls as shown in 
Table 2 (asterisks).  

 

 



 Theranostics 2019, Vol. 9, Issue 4 
 

 
http://www.thno.org 

1071 

 
Figure 1. Plasma treatment significantly accelerated wound healing in both male and female mice. (A-B) Representative images of wound healing progress in the 
treatment (treatment time as indicated) and control groups on days 0 (I), 6 (I`) and 9 (I``). White circles represent wound margins in males (A) and females (B). (C) Wound 
closure was monitored by transmitted light stereomicroscopy and quantified by ImageJ software on every third day over 15 days and related to wound size on the day of surgery 
(d0). The wound closure rate is plotted as the percentage reduction of the original wound area over time for males (left) and females (right) when compared to the untreated 
controls. (D-E) Hematoxylin and eosin (H&E), picrosirius red (PSR), keratin 1 (KRT1, red), and keratin 14 (KRT14, green) staining of ear wounds on day 15. Quantification of 
collagen fibers using fluorescence microscopy (diagrams in D) and qPCR of KRT1, KRT14, and inducible nitric oxide synthase (iNOS) on all time points (diagrams in E). Males and 
females were used on d15 (as indicated, n > 8); on d3/d6 only females were available for the measurements (n > 3). Data are presented as mean +/- S.D.; *p<0.05, **p<0.01, as 
compared to controls (ctrl / 0 s) at each day and assay; scale bars are 1 mm (A) and 50 µm (D-E). 
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Table 2: Plasma-induced effects on wound healing evaluated on 
days 6 and 15 using parameters to qualitatively assess healing 
scores with regard to collagen pattern (distribution, fiber 
orientation, early and mature collagen, amount of collagen), 
inflammation (inflammatory infiltrate), granulation (granulation 
tissue, cell accumulation, cell migration), angiogenesis (blood 
vessel formation, vascularization), and apoptosis (blebbing, 
shrinking, condensation); n.d. = not determined, *p<0.05; 
**p<0.01; ***p<0.001) modified from [12, 54, 81]. Each feature 
was graded from 1 (worst) to 5 (best) regarding healing. 

Features Time point ctrl 3 s 20 s H2O2 
Collagen 
pattern 

d6 2.0 ± 0.1 2.5 ± 0.1** 2.5 ± 0.1* n.d. 
 d15 3.0 ± 0.2 3.3 ± 0.2 3.9 ± 0.4** 3.1 ± 0.2 
Inflammation d6 1.0 ± 0.2 4.8 ± 1.3* 4.4 ± 2* n.d. 
 d15 1.0 ± 0.3 1.4 ± 0.6 2.2 ± 1.3 1.5 ± 0.6 
Granulation d6 1.0 ± 0.06 2.5 ± 0.01** 2.5 ± 0.02* n.d. 
 d15 1.1 ± 0.2 1.0 ± 0.09 1.5 ± 0.25* 1.1 ± 0.17 
Angiogenesis d6 n.d. n.d. n.d. n.d. 
 d15 2.1 ± 0.9 3.4 ± 1.2* 3.1 ± 0.7* 2.4 ± 0.8 
Apoptosis d6 1.0 ± 0.18 2.9 ± 0.20*** 2.7 ± 0.16*** n.d. 
 d15 1.0 ± 0.09 1.4 ± 0.08* 1.1 ± 0.09 1.0 ± 0.17 
Mean score d15 1.47 ± 0.25 2.56 ± 0.42 2.65 ± 0.56 1.82 ± 0.39 

 
No alterations in the early keratinocyte 

differentiation marker keratin 1 (KRT1) were 
observed, either with immune fluorescence 
microscopy or qPCR on day 15. Using the same 
methods, we identified significantly pronounced 
keratin 14 (KRT14) on day 15 in the plasma groups. 
Additionally, an early and sustained accumulation of 

inducible nitric oxide synthase (iNOS) was found 
providing evidence of the anti-microbial properties of 
cold plasmas (Figure 1E). 

Plasma-treated wounds showed an 
inflammatory profile distinct from control 
wounds 

Myeloid cell influx and differentiation dictates 
the inflammatory response in injury. Significantly 
more macrophages and neutrophils were found in 
plasma-treated wounds on day 6 and their presence 
was confirmed with immune fluorescence (Figure 
2A-B). On day 3 in females, only a tendency of 
increase of F4/80 and Ly6G-density was 
demonstrated. This effect was finished on day 15. 
Scattered inflammatory cell aggregation or 
multinucleated swollen macrophages were not 
detected in H&E or immune fluorescence staining 
(Figure 1D). To map the temporal inflammatory 
expression pattern, we performed expression and 
secretion analyses of several cytokines at different 
intervals during wound healing. The induction of 
interleukin 1β (IL-1β), IL-6, and tumor-necrosis factor 
α (TNFα) were particularly rapid and strong. In 
contrast to this proinflammatory profile, MCP-1 and 
IL-4 were in tendency reduced on days 3 and 6 in the 
plasma groups.  
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Figure 2. Plasma-treated wounds show a modulated cytokine pattern with increased early myeloid cell infiltrate. (A-B) Densitiy (in %, normalized to controls 
which were set to 100) and distribution of F4/80-positive macrophages (A) and Ly6G-positive neutrophils (B) in the skin after 3, 6, and 15 days. Representative images of F4/80- 
and Ly6G-stained (red) cells in wound regions (above the dashed line) on day 6 in plasma-treated compared to untreated mice. Scale bars are 50 µm (left images) or 20 µm (right 
images; higher magnification). (C) mRNA gene expression of inflammatory mediators IL-1β, IL-4, IL-6, MCP-1, TNFα, and TGFβ. (D) Cytokine secretion into the blood was 
measured for MCP-1, TNFα, and TGFβ 15 days after wounding using multiplex cytokine analysis. Males and females were used on d15 (as indicated; n > 8); on d3/d6 only females 
were available for the measurements (n > 3). Data are presented as mean +/- S.D.; *p<0.05, **p<0.01, ***p< 0.001, as compared to controls (ctrl) at each day and assay. 

 

Moreover, the transforming growth factor β 
(TGFβ) transcription was elevated on day 6, 
suggesting an inflammatory counterbalance to 
transition from the inflammatory to the 

re-epithelization phase (Figure 2C). In females on day 
15, a slight downregulation of TGFβ was observed, 
indicating an overshooting anti-inflammatory 
reaction that may have been responsible for excessive 
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collagen deposits. Moreover, no significant release of 
IL-1β, IL-6 (data not shown), MCP-1, TNFα, and TGFβ 
into the blood serum was observed on day 15 (Figure 
2D), suggesting the repeated, plasma-induced 
inflammatory response is non-persistent at a systemic 
level.  

Plasma-treated wounds presented a 
pronounced Nrf2 signaling signature 

Inflammation and antioxidant defense are 
intimately connected. We identified an upregulation 
of the master regulator of antioxidant defense (Nrf2) 
of up to 200 times (Figure 3A). A concomitant 
substantial increase of heme oxygenase 1 (HMOX1, 
gene product of HO-1) levels was detected on day 3 

(~250 fold) and day 6 (~100 fold) along with an early 
(days 3 and 6) and sustained (day 15) activation of 
NAD(P)H quinone oxidoreductase 1 (NQO1) at all 
time points. Western blot analysis confirmed an 
increase of Nrf2 at day 6 as well as of HO-1 and Nqo1 
in plasma-treated wounds (Figure 3B). After plasma 
treatment and release of Nrf2 from Keap1 by 
oxidation events at cysteine, Nrf2 translocated to the 
nucleus as shown in skin sections (left panel in Figure 
3C). In contrast to the even distribution of Nrf2 within 
dermal and epidermal layers of the ear skin, Nqo-1 
was mainly expressed in the basal epidermal layer as 
shown by immune fluorescence microscopy (right 
panel in Figure 3C).  
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Figure 3. Cold plasma induces an early activation of Nrf2 signaling pathway which controls cellular defense. (A) Mice were treated with cold plasma as described. 
Quantitative PCR (qPCR) for NRF2, HMOX1 and NQO1 were performed with total RNAs isolated from the wound regions. (B) Protein expression of Nrf2, HO-1 and Nqo1 was 
determined using Western blot analysis. (C) Nuclear expression and distribution of Nrf2 (left panel) was shown after plasma treatment by immunofluorescence staining in dermal 
layers of skin sections. Nqo1 was mainly expressed in the epidermal layer of the skin (right panel). (D) Nrf2 translocation from cytoplasma (upper images) to the nucleus (lower 
images) after plasma treatment (60 s) was shown in dermal fibroblasts (left) and in epidermal keratinocytes (right). (E) Changes in mRNA expression following siRNA-mediated 
transcriptional repression of NRF2 (left diagram) and KEAP1 (right diagram) in keratinocytes evaluated for NRF2, KEAP1, HMOX1, and NQO1 by qPCR. The mRNA level of 
scrambled siRNA were set to 1.14 and 0.91 (black lines) wheras the mRNA and protein levels of untreated mice or mock control without siRNA were set to 1 (dashed line) with 
n = 3 to 9 mice depending on time point. Males and females were used on d15 (as indicated); on d3/d6 only females were available for the measurements. Data are presented as 
mean +/- S.D.; *p<0.05, **p<0.01, ***p< 0.001, as compared to controls (ctrl) at each day and assay. 

 
 
Moreover, nuclear translocation of Nrf2 was 

demonstrated ex vivo in dermal fibroblasts and 
epidermal keratinocytes (Figure 3D) underlining the 
plasma-mediated activation of the Nrf2 pathway. To 
identify Nrf2-regulated genes following plasma 
treatment, Nrf2 and Keap1 were knocked down in 
keratinocytes (Figure S2). Basal expression of NRF2, 
KEAP1, and HMOX1 was decreased after Nrf2 
inhibition, which could not be rescued by plasma 
treatment (Figure 3E). Conversely, blockage of the 
physiological Nrf2 inhibitor through siRNA targeting 
Keap1 resulted in normal baseline levels of HMOX1, 
NRF2, and NQO1, with plasma treatment not, or only 
moderately, increasing them. Results (Figure 3D and 
3E) are from primary cells of male mice, and were 
similar for those of female mice (data not shown). 

Nrf2 regulates antioxidative response (ARE) 
genes. Expectedly, plasma treatment not only 
enhanced Nrf2 expression but also that of 
downstream targets, such as catalase (CAT), 

thioredoxin (TRX), glutathione reductase (GSR), and 
glutathione peroxidase 2 (GPX2). In contrast, 
cytoplasmic superoxide dismutase (SOD1) was 
significantly decreased by twofold changes on days 3 
and 6 (Figure 4A). Western blot analysis confirmed a 
translational regulation of peroxiredoxin 6 (Prdx6), 
Sod1, Cat, thioredoxin reductase 1 (Trxr1), and GSR 
that was orchestrated by plasma treatment (Figure 
4B). Next, down-stream targets of Nrf2 were analyzed 
in Nrf2 knockdowns, which resulted in the expected 
reduction of downstream target baseline levels 
(control columns for each target). In contrast to GSR, 
GCLC, and GCLM, mRNA was significantly increased 
after plasma treatment of knockdowns in primary 
cells of male mice (Figure 4C), with similar findings 
made with female mice (data not shown). This 
indicates an inverse regulation of both subunits. In 
summary, Nrf2 is a key response pathway to plasma 
treatment in skin cells in vitro and in skin in vivo. 
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Figure 4. Cold plasma increased antioxidants in skin tissues and cells. (A) The mRNA expression levels in ear skin tissues from plasma-treated and untreated (ctrl) 
mice were compared and summarized in the indicated experimental groups: SOD1, superoxide dismutase 1; CAT, catalase; TRX, thioredoxin; GSR, glutathione reductase; GPX2, 
glutathione peroxidase 2. (B) Western blot analysis of peroxireductase 6 (PRDX6), Sod1, catalase, thioredoxin reductase 1 (TRXR1), and GSR. (C) Keratinocytes were 
transfected with siRNA targeting NRF2 and evaluated for SOD1, SOD1, CAT, PRDX6, GSR, GCLC, GCLM, and Cx43 mRNA expression by qPCR. The mRNA level of scrambled 
siRNA and mocked control without siRNA were set to 1.14 (black lines) and 1 (dashed lines), respectively. The mRNA and protein level of untreated mice were arbitrarily set 
to 1 with n = 3 to 9 mice depending on time point (dashed lines in d and g). Males and females were used on d15 (as indicated); on d3/d6 only females were available for the 
measurements (n > 3). The data are presented as mean +/- S.D.; *p<0.05, **p<0.01, ***p< 0.001, as compared to controls (ctrl) at each day and assay. 
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Plasma-treated wounds were enriched for 
angiogenic factors and microvessels  

Antioxidant defense and inflammation are 
necessary factors in wound healing but are 
insufficient without adequate blood supply. 
Therefore, neovascularization and growth factor 
expression were studied in control and 
plasma-treated ear wounds. Throughout all sampling 
time points, plasma therapy significantly upregulated 
CD31 (Figure 5A). Similarly, keratinocyte (KGF), basic 
fibroblast (bFGF), vascular endothelial (VEGFA), 
heparin-binding EGF-like (HBEGF), and colony 
stimulating (CSF2) growth factors were increased 
(Figure S2D), suggesting an improved wound 
vascularization. Inducible cyclooxygenase COX2 is 
fundamentally crucial in angiogenesis [33] and was 
strongly induced during the late stages of wound 
healing in plasma-treated mice. Furthermore, a 
moderate down-regulation of VE-cadherin (CDH5) on 
day 15 was observed (Figure 5A). Immune 
histochemical staining of wound tissue sections 
confirmed corresponding changes of the major 
angiogenetic factors such as CD31 and KGF (Figure 
5B). Using Western blot analysis, we showed a 
moderate increase of KGF protein whereas the 
serine/threonine kinase Akt and the phosphorylated 
form of Akt (p-Akt) were significantly increased, 
especially in females (Figure 5C). Both are known to 
control several events that are critical for angiogenesis 
and homeostasis [34]. Significant changes in mRNA 
expression levels of others angiogenetic mediators 
such as endothelial NOS (eNOS), artemin 1 (ARTN1), 
endothelin 1 (EDN1), ephrin 2 (EFNB2), 
platelet-derived growth factor receptor CD140a, 
matrixmetallopeptidase (MMP9), or inhibitor of MMP 
(TIMP1) during plasma-promoted wound healing 
were not detected (data not shown).  

To monitor microvessel networks directly, 
intravital microscopy was performed and revealed 
newly formed microvessel in a radial and circular 
pattern (Figure 6A-B). At day 6, the diameter and 
densitiy of radial and circular vessels did not 
significantly differ between groups and were 
therefore not presented in detail. The resolution of 
microvessel pattern shown by intravital microscopy 
was limited due to the technical errors in 
FITC-dextran injections and hence not quantified. 
Scoring of neovascularization is described in Table 2. 
On day 15, the microvessel network (Figure 6C) was 
additionally quantified by determination of vessel 
diameters and functional microvessel density (FMD). 
No significant difference for radial or circular 
diameters was observed effect with 3 s or 20 s plasma 
treatment (from 5.9±0.4 µm to 6.9±0.4 µm) when 
compared to controls (from 5.8±0.3 µm to 6.4±0.3 µm) 

(Figure 6D). Although, the FMD was between 220 and 
230 cm/cm² in sourrounding tissue (data not shown), 
the FMD was relatively low (mean level 130 cm/cm²) 
in the wound area in all experimental groups. 
However, and compared to controls (appr. 120 
cm/cm²), FMD significantly increased upon plasma 
treatment (135 to 150 cm/cm², Figure 6E) but did not 
reach the same level as in the sourrounding tissue at 
this time point. Nevertheless, the findings support the 
notion of enhanced angiogenesis in plasma-induced 
healing. 

Plasma-treated wounds promoted dermal 
proliferation while showing fewer apoptosis 

Proliferation and apoptosis are prerequisites to 
wound healing. Plasma treatment significantly 
increased basal proliferation on days 3 and 6 (day 15 
in tendency), as seen with Ki67-positive cells in the 
wound region (Figure 7A). Conversely, apoptotic 
cells were significantly decreased in the plasma 
groups on day 6. On day 15, there were only slight 
differences in the number of apoptotic cells in the 
wound region (Figure 7B). The lower frequency of 
TUNEL+ apoptotic cells may be due either to 
enhanced macrophage numbers and activity, or a 
redox-mediated suppression mediated by 
plasma-derived reactive species. To test the latter 
option, transcriptional modulation of p53 and its 
downstream targets of the apoptotic branch 
BBC3/Puma (a p53 upregulated modulator of 
apoptosis), the pro-apoptotic BAX, the anti-apoptotic 
BCL2, the cell cycle arrest branch with CDKN1A 
(encoding p21), and the DNA repair branch 
(GADD45α) were investigated. Plasma treatment 
mainly inhibited p53 and BAX expression at early 
wound stages, whereas PUMA protein expression 
was moderately but significantly down-regulated in 
females on day 15 (Figure 7C-D). In contrast, the 
anti-apoptotic Bcl2 was upregulated 50-fold on day 6 
in the 20 s plasma group but decreased to baseline 
levels on day 15 (Figure 7E). CDKN1A (Figure 7F), 
encoding protein p21 (data not shown), and Gadd45α 
expression (Figure 7G) remained largely unchanged 
at all sampling time points and treatment conditions. 
This finding suggests negligible toxicity or genotoxic 
stress as a result of exposure to plasma-derived 
reactive species. Additionally, qualitative (Figure 
S1D) and quantitative (qPCR, data not shown) 
measurements failed to find increased levels or 
increased phosphorylation of histone A2X, a marker 
of DNA damage and repair. 

Discussion 
The idea that wound healing was subject to 

redox control was proposed more than a decade ago 
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[35]. Although numerous findings in this regard were 
made while investigating cell-derived reactive 
species, the application of short-lived exogenous 
species triggering the same wound-spurring redox 
pathways has been limited to date. Cold physical 
plasma is a technology that generates a multitude of 

reactive species in the gas phase that are transported 
to tissues. Here, we not only demonstrated the 
capacity of plasma to enhance wound healing, but 
also provided mechanistic insight on crucial changes 
in inflammation and signaling pathways that are 
associated with improved healing responses. 

 
 

 
Figure 5. Promotion of pro-angiogenic factors in plasma-treated wounds. (A) SKH1 mice were either exposed to plasma for 3 s or 20 s or were left untreated (ctrl). 
The mRNA level of CD31 was strongly increased on day 15 (**p< 0.01). Both the basic FGF (bFGF) and KGF (FGF7) were significantly upregulated in the plasma-treated animals 
at all time points. Cyclooxygenase (COX2) and VE-cadherin (CDH5) were only regulated on day 15 in the plasma-treated groups. (B) Immunohistological staining confirmed a 
stronger expression of CD31 (arrowhead) and KGF (asterisks) after 6 days in plasma-treated animals compared to controls. Scale bar is 50 µm. (C) KGF protein expression 
showed a significant increase on day 6 whereas Akt and phospho-Akt proteins were up-regulated in plasma-treated females. Males and females were used at on 15 (as indicated, 
(n > 8).); on d3/d6 only females were available for the measurements (n > 3). The data are presented as mean +/- S.D.; *p<0.05, **p<0.01, ***p< 0.001, as compared to controls 
(ctrl) at each day and assay. 
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Figure 6. Plasma-supported formation of microvascular network during wound healing. (A-C) Representative photomacroscopic images of ears and intravital 
fluorescence microscopy images of microvascular features in wound regions (white circles). (A) A typical microvascular architecture of non-wounded skin with papillary loops 
around empty hair follicles (arrowheads in black dashed circle) is shown in hairless mouse (AI). Visualization of arterioles, venules and capillary (*) in the ear tissue (AII) and 
schema of diameter and functional microvessel density (FMD) measurements in one cm² (quadrat) in wound area and surrounding tissue (AIII). (B) During the first days of wound 
healing (d6), the microvessel network creates an outer ring of radial vessels (BI; higher magnification in 1) and an inner circular ring (dashed line) to the wound margin (BI, higher 
magnification in 2). (C) Novel formed microvessels are between white circles in untreated controls (male, CI), plasma-treated males (CII), and plasma-treated females (CIII). 
The white continuous line marks wound area on day of wounding, the dashed line represents the eye of wound at indicated time points. Scale bars are 1 mm (A-C); 200 µm (AI-II, 
BI, CI-III); 50 µm (B1-2). (D-E) Quantitative analysis of vessel diameter (µm) and FMD (cm/cm²) in both gender (n>3). Males and females were used on d15 (as indicated, n > 8); 
on d3/d6 only females were available for the measurements. The data are presented as mean +/- S.D.; *p<0.05, **p<0.01, ***p< 0.001 using one-way ANOVA. 

 
We identified the pivotal involvement of the 

redox-regulating Nrf2 and p53 signaling pathway in 
cold plasma-treated wounds. Redox signaling 
transcriptionally controls protein and enzyme activity 
as well as post-translational modifications such as 
nitrosylation, hydroxylation, and glutathionylation 
[36]. Nrf2, as a gatekeeper of intra- and extra-cellular 
redox signals, enables responses to oxidizing noxae 
[37]. Glutathione (GSH) metabolism via 
transcriptional modulation of GSR [38] and the 
antioxidant glutathione peroxidases (GPX) [39] are 
also under the control of Nrf2. We found a protective 
Nrf2 signaling in response to plasma that 
counteracted oxidative stress via upregulation of its 
down-stream targets such as catalase, peroxiredoxins, 
and thioredoxins (TRX) during wound healing. 
Through reactive species-induced oxidation of Keap 1 

cysteines, which act as redox-sensor, activation of 
Nrf2 is allowed, leading to an increase in antioxidant 
defense, which was also shown in human 
keratinocytes in vitro [28], further supporting our 
findings in this study. TRX functions to reduce 
oxidized target protein cysteine disulfides that were 
generated from excess oxidants [40]. CDKN1A, 
another target of Nrf2 [41], is a key downstream 
molecule of p53 modulating cell-cycle and glutathione 
metabolism that again feeds into antioxidant defense 
[42].  

Nrf2 also signals inflammation via inhibition of 
NF-κB [43], activation of HMOX1 (encoding HO-1), 
and COX2 [44]. A previous study found that 
Nrf2-ARE-driven genes such as HMOX1, NQO1, and 
glutamate cysteine ligase (catalytic GCLC and 
regulatory subunit GCLM) block monocyte 



 Theranostics 2019, Vol. 9, Issue 4 
 

 
http://www.thno.org 

1080 

chemoattractant protein-1 (MCP-1/CCL2) [43]. 
Interestingly, we observed a strong up-regulation of 
GCLC and GCLM after plasma treatment and Nrf2 
knockdown, suggesting that other pathways can 
compensate the knockdown of Nrf2 in vitro. The most 
likely candidate for this compensatory effect after 
siRNA targeting Nrf2 is Nrf1/3 [45].  

Nrf2 is also a key regulator in macrophages [46]. 
Macrophages are innate immune cells, which secret 
and respond to a repertoire of cytokines, e.g. TNFα, in 
an autocrine or paracrine manner, thus emphasizing 
the inflammatory response [47]. Their migration, 
maturation, and phenotyping are tightly controlled 
throughout physiological wound healing phases [48]. 
In our study, plasma increased macrophage and 
neutrophil influx and upregulated pro-inflammatory 
markers IL-6 or TNFα at early but not later stages of 
wound healing. This finding suggests that mild 
inflammation by plasma treatment is necessary to 
recruit myeloid cells, followed by an increase in 

anti-inflammatory and antioxidant pathways such as 
Nrf2 at early stages. Our in vitro results confirmed a 
Nrf2-dependent inhibiting of pro-inflammatory 
cytokines as shown by siRNA knockdown targeting 
Nrf2, which has been demonstrated in previous 
studies [49].  

Cell proliferation and programmed death are 
dependent on reactive species-mediated signaling [3, 
15, 50]. Observational studies of plasma-accelerated 
reepithelialization and granulation in animals [51-54] 
and humans [23, 24, 55-57] support this notion. Using 
Ki67 as a marker, we observed an increase in 
proliferation and tissue repair and the earlier 
development and accumulation of granulation tissue, 
together with increased collagen expression after 
plasma treatment. p53 and its down-stream targets 
mediates programmed cell death in wounds [12, 58]. 
Its activity depends on the stage of wound healing, 
which our data confirm.  
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Figure 7. Cold plasma increases proliferation and attenuates tissue apoptosis by regulation of p53 signaling in dependence of wound healing stages. (A) 
SKH1 mice were either exposed to plasma treatment (3 s and 20 s) or were left untreated (ctrl). Ki67-positive cells (red) were significantly increased in the plasma-treated skin 
in contrast to untreated mice. (B) TUNEL-positive cells (green) were rarely seen in the dermis of plasma-treated skin (3 s or 20 s) in contrast to untreated mice (ctrl). The nuclei 
are labeled with Hoechst 33342 (blue). Scale bar is 50 µm. (A-B) Quantification of Ki67- and TUNEL-positive cells show a significant increase of proliferative cells on day 6 (A) 
and a decrease of apoptotic cells in the regenerating skin after plasma treatment. Outside of the wound regions, no differences were detected (B). (C-D) Gene expression levels 
of p53 and BAX (left diagrams) were significantly down-regulated on day 6. p53 was moderately up-regulated on day 15, which was confirmed by protein expression on day 15 
(right diagram). Puma protein levels were significantly decreased in females on day 15 (right diagram). (E) The anti-apoptotic protein Bcl-2 was mainly up-regulated after 6 days 
but mainly unchanged on day 15. (F-G) CDKN1A expression level (F) and Gadd45a protein expression (G) were unchanged upon plasma treatment. Males and females were used 
on d15 (as indicated, n > 8) on d3/d6 only females were available for the measurements (n > 3). The data are presented as mean +/- S.D.; *p<0.05, **p<0.01, ***p< 0.001, as 
compared to controls (ctrl) at each day and assay. 
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Pro- and anti-apoptotic factors control the 
removal of inflammatory cells and angiogenesis [59]. 
Moreover, p53 is central in angiogenesis and essential 
in the regulation of nitric oxide synthase (NOS) [33]. 
Our results are consistent with other studies [60] 
showing that the overexpression of NOS causes the 
down-regulation of superoxide dismutase 1 (SOD1) 
[61]. Plasma-released NO [62-64] may be a driver for 
the increased iNOS and COX2 expression observed 
here in plasma-treated ear wounds. COX2 regulates 
angiogenesis via growth factor expression [65]. 
Plasma induces the upregulation of growth factor and 
angiogenic transcripts in human keratinocytes [17], a 
finding confirmed by this study (e.g. KGF, FGF, 
VEGFA, HBEGF, CSF2, bFGF, CD31, Akt/p-Akt). In 
support of our findings, p53 silencing improved 
diabetic wounds through augmented CD31 and VEGF 
expression [66] and KGF receptor activation, which is 
central during wound healing [34]. Moreover, Akt 
takes a center stage in angiogenesis signaling [67].  

Intravital microscopy (IVM) confirmed that 
plasma treatment triggered an “angiogenic switch” 
also known to be induced in principle by other signals 
such as metabolic and mechanical stress as well as 
immune and inflammatory responses [68]. The 
increase of functional microvessel density (FMD) 
upon plasma treatment may have increased oxygen 
and nutrient supply into the wounded area. 
Oxygenation has been suggested to be benifical in 
healing of chronic wounds [15]. Interestingly, several 
studies pointed out the pivotal role of Nrf2 in 
angiogenesis [69, 70] by promoting vascular 
development [71], preventing downregulation of 
insulin and MAPK signaling [72] and reduction of 
oxidative stress in endothelial cells [73]. Moreover, 
plasma-induced regulation of Nrf2 and down-stream 
targets coincided with angiogenesis [74, 75]. Vice 
versa, Nrf2 dysfunction is responsible for impaired 
angiogenesis and microvascular rarefraction [76]. In 
our study, we found knockdown of Nrf2 correlating 
with a reduced growth factor expression in 
keratinocytes (Figure S2), supporting the view of an 
accelerated healing response including 
neovascularization and angiogenesis following 
plasma treatment. 

Our study has limitations. First, we were not able 
to fully explore the gender dimension of the 
molecular mechanisms on wound healing on day 6 to 
possibly explain different healing responses with 
plasma seen in male vs. female mice. These 
differences may be explained by mutual cross-talk 
between redox and hormone signaling [77], as 
demonstrated before [78-80]. Second, defective 
wound healing in patients often is a problem of the 
elderly. Our study design intended to address the 

molecular mechanisms of plasma-induced wound 
healing, and understanding the role of age in these 
processes may be a subject of future studies. 

In summary, repetitive treatment with cold 
physical plasma-derived reactive species promoted 
early ear wound closure in SKH1 mice. This finding 
was associated with an enhanced infiltration of 
macrophages and neutrophils, an upregulated 
transcription of both pro-inflammatory and 
anti-inflammatory mediators, increased proliferation 
and decreased apoptosis, a spurred antioxidative 
defense response driven by Nrf2, and enhanced 
angiogenesis. Wound healing is a multifactorial 
process. Hence, isolating a single above mentioned 
effector as the main driver of reactive species-driven 
acceleration in wound healing would be 
inappropriate. Instead, redox-driven processes that 
are initiated with plasma-derived species appear 
capable of spurring several physiological processes. 
Unraveling their molecular details may support new 
avenues for skin regeneration and, importantly, for 
treating poorly healing wounds.  
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