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Abstract 

With the recent developments in deep learning technologies, artificial intelligence (AI) has gradually 
been transformed from cutting-edge technology into practical applications. AI plays an important 
role in disease diagnosis and treatment, health management, drug research and development, and 
precision medicine. Interdisciplinary collaborations will be crucial to develop new AI algorithms for 
medical applications. In this paper, we review the basic workflow for building an AI model, identify 
publicly available databases of ocular fundus images, and summarize over 60 papers contributing to 
the field of AI development. 
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Introduction 
Artificial intelligence (AI) has recently 

experienced an era of explosive growth across many 
industries, and healthcare is no exception [1]. AI will 
have particular utility in healthcare and will 
dramatically change the diagnostic and treatment 
pathways for many, if not most, diseases. Regardless 
of the specific technique, the general aim of these 
technologies in medicine is to use computer 
algorithms to uncover relevant information from data 
and to assist clinical decision making [2]. In many 
developed countries and China, the application of AI 
technology in healthcare has developed quickly, at 
least in part because it enhances human resources and 
abilities and improves the accuracy of medical 
treatment. As many countries that support the 
development of advanced technologies welcome the 
incoming era of AI, they will begin to develop the 
necessary specifications of governance by law, 
regulation, technology, and standards to fully 
optimize this developing field of technology. 

Ophthalmology is a discipline that is highly 
dependent on technological development. Modern 

ophthalmology currently makes full use of 
mechanical, electrical, magnetic, acoustic, optical, and 
other imaging technologies, and it will lead in fully 
implementing and adapting new technological 
developments such as AI. Ophthalmologists should 
enthusiastically embrace the development of AI 
technology and use it to promote advances in ocular 
medicine as much as possible.  

Workflow of deep learning 
AI is broadly used in both the technical and 

popular lexicons to encompass a spectrum of learning, 
including but not limited to machine learning, 
representation learning, deep learning, and natural 
language processing [1]. Deep learning is making 
major advances in solving problems that have resisted 
the best attempts of the AI community for many 
years. It is very good at discovering intricate 
structures in high-dimensional data and is therefore 
applicable to multiple medical domains [3]. Deep 
learning discovers intricate structure in large data sets 
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by using multiple intermediate layers positioned 
between the input and output layers, allowing each 
level to learn to transform its input signal into the 
following layer (Fig 1). The application of deep 
learning, particularly in images of the retina include 
classification, e.g., detection of diabetic retinopathy 
(DR) and diabetic macular edema (DME) in fundus 
photographs [4]; segmentation, e.g., segmentation of 
the lungs [5], brain [6], cell mitosis [7]; and prediction, 
e.g., prediction of myopia development and 
progression [8]. The workflow of deep learning can be 
defined in three stages: (1) pre-processing of the 
image data; (2) training of the model, validation, and 
model testing; and (3) evaluation (Fig. 2). Data 
pre-processing is a critical step that is necessary to 
build accurate machine learning models. The 
pre-processed work includes noise reduction, data 
normalization, feature selection, and extraction [9]. 
For training a model, we initially split the model into 
three sections: data training, validation, and testing. 
The training set enables the model to learn to fit the 
data parameters of the classifier. The validation set is 
used to prevent overfitting, and the test set is used to 
evaluate the performance of the trained model. 
Evaluation is an integral part of the development 
process. It helps to determine if the model will do a 

good job of predicting the target on new and future 
data.  

Common open database of retina images 
Many public databases have been published, 

and most include instructions for use by researchers 
in analysis and testing. For diseases of the retina, the 
databases include basic pathological features that 
usually provide information about the seven layers of 
the retina and about the choroid and sclera. This type 
of information is compiled by a process referred to as 
“segmentation”, which historically has been achieved 
by manual image processing, but increasingly it is 
done by computer algorithms. This information 
allows comparison of the performance of different 
algorithms analyzing the same fundus image, with 
reference to the reliable implementation of a 
gold-standard procedure [10]. Commonly used 
fundus databases includes DRIVE [11], STARE [12], 
Image-Ret [13,14], e-ophtha [15], HEI-MED [16], 
Retinopathy Online Challenge [17], Messidor [18], 
RIM-ONE [19], and DRION-DB [20]. Among them, 
DRIVE, STARE, Image-Ret, and Messidor are used 
mostly to diagnose DR, while DRION-DB and 
RIM-ONE are used mostly for segmentation of the 
optic nerve head in the diagnosis of glaucoma (Table 
1). 

 

 
Figure 1. A typical deep learning neural network with multiple deep layers between input and output layers 

 
Figure 2. Workflow diagram of developing a deep learning-based medical diagnostic algorithm. 
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Table 1. Summary of publicly available databases of ocular retinal images 

Database Number of 
images 

Camera Model Image Resolution 
(pixels)  

Field of 
View 

Application 

DRIVE [11] 40 Canon CR5 768×584 45° Blood vessel segmentation 
STARE [12] 400 Topcon trv-50 605×700 35° Blood vessel segmentation; Optic disk 

detection 
Image-Ret [13,14]      
DIARETDB0  130 unknown 1500×1152 50° Diabetic retinopathy detection 
DIARETDB1 89 unknown 1500×1152 50° Diabetic retinopathy detection 
e-ophtha [15]      
e-ophtha_EX 82 OPHDIAT Tele-medical network 2048×1360; 1440×960 - Diabetic retinopathy detection 
e-ophtha_MA 381  1440×960; 2544×1696  Diabetic retinopathy detection 
HEI-MED [16] 169 Zeiss Visucam PRO fundus camera 2196×1958 45° Hard exudate detection; Diabetic macular 

edema assessment 
Retinopathy Online 
Challenge [17] 

100 Canon CR5-45-NM 768×576; 1058×061; 
1389×1383 

45° Microaneurysms detection 

Messidor [18] 1200 TopCon TRC NW6 1440×960; 2240×1488; 
2304×1536 

45° Diabetic retinopathy detection 

RIM-ONE [19] 169 Nidek AFC-210 with a body of a Canon EOS 5D 2144 × 1424 - Optic nerve head segmentation 
DRIONS-DB [20] 110 Color analogue fundus camera digitized by 

HP-PhotoSmart-S20 scanner 
600×400 - Optic nerve head segmentation 

 
 

Important research studies applying 
artificial intelligence to ophthalmic 
conditions  

Image classification is a long-term research topic 
in the field of computer vision and pattern 
recognition. Recent advances of deep learning 
techniques have greatly facilitated the research of 
image classification. Many deep learning models have 
demonstrated performances comparable with 
well-trained human experts in the classification of 
natural images, and some have outperformed the 
experts. The flourish of deep learning-based image 
classification started with the work of AlexNet [21], 
where an eight-layered convolutional neural network 
(CNN) was designed for the classification task in 
ImageNet Large Scale Visual Recognition Challenge 
(ILSVRC). Subsequently, a series of deeper neural 
networks continuously refreshed the record of 
ILSVRC, including GoogLeNet (22 layers) [22], 
VGGNet (16 or 19 layers) [23], and Deep Residual Net 
(18, 34, 50, 101, or 152 layers) [24]. These neural 
networks are the most widely used architectures that 
can achieve accurate classification for natural images 
by training deep models with millions of annotated 
images.  

Diabetic retinopathy  
Diabetic retinopathy is the most common organ 

complication and can manifest as the earliest sign of 
complication of diabetes mellitus. Early detection and 
continuous monitoring of DR is essential to control 
the disease in the early stage to prevent blindness. The 
automatic detection of DR has attracted a lot of 
attention. Most automated methods use fundus 
images as an input. These photographs are examined 
for the presence of lesions indicative of DR, including 

microaneurysms, hemorrhages, exudates, and cotton 
wool spots. The application of automated image 
analysis to fundus images may reduce the workload 
and costs by minimizing the number of photographs 
that need to be manually graded [25]. Gulshan et al [4] 
were the first to present a deep learning algorithm for 
the detection of DR in retinal fundus photographs. In 
2 validation sets of 9963 images and 1748 images, at 
the operating point selected for high specificity, the 
algorithm had 90.3%and 87.0%sensitivity and 
98.1%and 98.5%specificity for detecting referable 
diabetic retinopathy, defined as moderate or worse 
diabetic retinopathy or referable macular edema by 
the majority decision of a panel of at least 7 US 
board-certified ophthalmologists. Subsequently, Ting 
et al[26] developed a deep learning system to detect 
multiple related eye diseases, including DR, possible 
glaucoma, and age-related macular 
degeneration(AMD), the Area under the receiver 
operating characteristic curve (AUC) of 0.936 for 
referable DR ,sensitivity and specificity were 90.5% 
and 91.6%, For vision-threatening diabetic 
retinopathy, AUC was 0.958,sensitivity and specificity 
were 100% and 91.1%. More recently, deep learning 
was applied to automated segmentation of optical 
coherence tomography (OCT) images. Kermany et al 
[27] developed an OCT imaging diagnostic tool based 
on a deep learning framework for screening patients 
with AMD, DME, and drusen. The classifier 
distinguishing DME images from normal images 
achieved an accuracy of 98.2%, with a sensitivity of 
96.8% and specificity of 99.6%. In April 2018, the first 
AI diagnostic system to receive US Food and Drug 
Administration (FDA) approval for marketing was 
IDx-DR, the case of IDx-DR highlights one of the 
earliest successes of an AI-based technology 
completing the regulatory process in the United 
States. 
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Glaucoma 
Glaucoma is a group of eye diseases that damage 

the optic nerve and can result in irreversible vision 
loss and blindness and is the second leading cause of 
blindness worldwide. It is estimated that the disease 
affected 60.5 million people in 2010, and this figure is 
expected to reach 79.6 million by 2020 [28]. Currently, 
there is no cure for glaucoma, and vision loss, once it 
has occurred, is permanent. However, early detection 
and treatment are helpful to slow or stop the disease 
progression and can protect against serious vision 
loss. Many researchers have studied how to diagnose 
glaucoma automatically based on retinal images. 
These studies can be separated into two types. The 
first type outputs the glaucoma diagnosis results 
directly through deep learning models. Li et al [29] 
trained a CNN on LabelMe datasets for glaucoma 
diagnosis, In the validation dataset, this DL system 
achieved an AUC of 0.986 with sensitivity of 95.6% 
and specificity of 92.0%. The most common reasons 
for false-negative grading were glaucomatous optic 
neuropathy with coexisting eye conditions, including 
pathologic or high myopia, DR, and AMD. The 
leading reason for false-positive results was having 
other eye conditions, mainly including physiologic 
cupping. The second type of studies uses deep 
learning models to segment the glaucoma related 
tissues such as optic disc and optic cup, and then 
calculates medical measures (e.g., cup-to-disc ratio) 
for diagnosis. Previous studies have used various 
special forms of perimetry to discriminate 
preperimetric glaucoma from healthy eyes[30]. 
Asaoka et al [31] applied a DL method to differentiate 
the visual fields of preperimetric open-angle 
glaucoma patients from the healthy eyes, the AUC 
was 0.926. 

Age-Related Macular Degeneration 
AMD is a leading cause of irreversible visual loss 

in the aging population; the meta-analysis conducted 
by Wong et al [32] suggested that AMD, was 
responsible for 8.7% of all global blindness. 
Fortunately, the anti-vascular endothelial growth 
factor (anti-VEGF) medications have revolutionized 
the treatment of exudative retinal diseases, OCT is 
critical to guiding the administration of anti-VEGF 
therapy by providing a clear cross-sectional 
representation of the retinal pathology in these 
conditions. Kermany et al [27] developed an OCT 
imaging diagnostic tool based on a deep learning 
framework for screening patients with AMD, DME, 
and drusen. This AI system categorized images with 
choroidal neovascularization and images with 
diabetic macular edema as “urgent referrals”, drusen 

as “routine referrals”, normal images were labeled for 
“observation”. They achieved an accuracy of 96.6%, 
with a sensitivity of 97.8%, a specificity of 97.4%, and 
a weighted error of 6.6%. The classifier distinguishing 
choroidal neovascularization images from normal 
images achieved an accuracy of 100.0%, with a 
sensitivity of 100.0% and specificity of 100.0%. 
Recently, DeepMind and the Moorfields Eye Hospital 
[33] developed an AI system was trained on 14 884 
OCT scans to detect 9 different OCT pathologies 
(choroidal neovascularization, macular edema, 
drusen, geographic atrophy, epiretinal membrane, 
vitreomacular traction, full-thickness macular hole, 
partial thickness macular hole, and central serous 
retinopathy). The system was then able to recommend 
a referral decision based on the most urgent 
conditions detected, the correct referral decision with 
94% accuracy, matching world-leading eye experts.  

In addition to detecting and monitoring common 
blinding eye diseases, deep learning is also being 
expanded to the field of rare diseases, such as 
congenital cataracts and retinopathy of prematurity 
(ROP) in newborns. Long et al [34] constructed a 
CNN-based computer-aided diagnosis framework 
(CC-Cruiser) to classify and grade congenital cataract. 
In the clinical trial, CC-Cruiser achieved 98.25% 
accuracy with the identification networks; 100%, 
92.86% and 100% accuracy for opacity areas, densities 
and locations, respectively, with the evaluation 
networks; and 92.86% accuracy with the strategist 
networks. Brown et al [35] reported the results of a 
fully automated DL system that could diagnose plus 
disease, the most important feature of severe ROP, for 
diagnosis of plus disease, the algorithm achieved a 
sensitivity of 93% with 94% specificity. For detection 
of pre–plus disease or worse, the sensitivity and 
specificity were 100% and 94%, respectively. In 
addition, retinal microvascular changes and 
retinopathy provide important clinical indicators for 
predicting the occurrence, development, therapeutic 
effect and prognosis of cardiovascular and 
cerebrovascular diseases. Poplin et al[36] using 
deep-learning models trained on data from 284,335 
patients and validated on two independent datasets of 
12,026 and 999 patients, they predicted cardiovascular 
risk factors not previously thought to be present or 
quantifiable in retinal images, such as age (mean 
absolute error within 3.26 years), gender(AUC) = 0.97, 
smoking status (AUC = 0.71), systolic blood pressure 
(mean absolute error within 11.23 mmHg) and major 
adverse cardiac events (AUC = 0.70).Current AI 
studies using deep learning techniques for DR, AMD, 
glaucoma, cataract, and anterior ocular segment 
diseases are summarized in Table 2 
[4,26,27,29,31,34,37-63].  
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Table 2. Summary of influential papers on ophthalmic image analysis 

Disease Procedures / 
examinations 

Data sets Deep learning techniques Performance Reference 

Keratoconus Pentacam 194 normal, 454 keratoconus, 67 
forme fruste, 28 astigmatic, 117 
after refractive surgery  

SVM Acc: 98.9%; Sen: 99.1%; Spe: 98.5%; AUC:0.99 Hidalgo et al. [37] 

 Dual 
Scheimpflug 
Analyzer  

177 normal, 148 keratoconus Decision Tree Sen: 100%; Spe: 99.5% Smadja et al. [38] 

 Pentacam HR 30 normal, 15 unilateral 
keratoconus, 30 bilateral 
keratoconus 

FNN Bilateral keratoconus versus normal; AUC: 0.99; 
Sen: 100%; Spe: 95% 

Kovacs et al. [39] 

Pterygium Anterior 
segment 
photographed 
images  

2,692 non-pterygium, 325 
pterygium 

Shape features + SVM/ANN  Acc: 91.27%; AUC: 0.956; Sen: 88.7%; Spe: 88.3% Zaki et al. [40] 

Cataract Slit-lamp image 5,378 images with decimal 
grading scores ranging from 0.1 
to 5.0. 

CRNN 70.7% exact integral agreement ratio (R0); 88.4% 
decimal grading error ≤ 0.5 (Re0.5); 99.0% decimal 
grading error ≤ 1.0 (Re1.0 ).  

Gao et al. [41] 

 Slit-lamp image 476 normal, 410 cataract DCNN Cataract vs Normal: 
Acc:98.87%;Sen:98.78% 
Spe:98.95% 

Long et al. [34] 

 Fundus image 767 normal, 472 cataract (246 
mild cataract,128 moderate 
cataract, and 98 severe cataract) 

SVM, BPNN Acc: 93.2% for detection,84.5% for grading; 
Sen:94.2% for detection,74.6-89.3% for grading; 
Spe:91.5% for detection,90.4-98.9% for grading 

Yang et al. [42] 

 Slit-lamp image 476 normal, 410 pediatric 
cataract 

CNN, SVM Acc, Sen, and Spe: classification (97.07%, 97.28%, 
and 96.83%,) three-degree grading area (89.02%, 
86.63%, and 90.75%) density (92.68%, 91.05%, and 
93.94%) location (89.28%, 82.70%, and 93.08%) 

Liu et al. [43] 

POAG Fundus image Training set:125,189; Validation 
set: 71,896 

DLS  AUC: 0.942; Sen: 96.4%; Spe: 87.2% Ting et al. [26] 

 Fundus image Training set: 31,745; Validation 
set: 8,000 

DCNN AUC: 0.98; Acc: 92.9%; Sen: 95.6%; Spe: 92.0%; 
AUC: 0.986 

Li et al. [29] 

 Fundus image 589 normal, 837 glaucoma CNN Acc: 98.13%; Sen: 98%; Spe: 98.3% Raghavendra et al. [44] 
 Fundus image 30 normal, 30 open-angle 

glaucoma  
SVW Acc:91.67; Sen:90%;Spe:93.33% Krishnan et al. [45] 

 Visual field  Training set:257; Test set: 129 ANN AUC: 0.890; Sen: 78.3%; Spe: 89.5% Oh et al. [46] 
 Fundus image 266 normal, 72 mild, 86 

moderate, 86 severe glaucoma  
SVM Acc: 93.1%; Sen: 89.75%; Spe: 96.2% Acharya et al. [47] 

 Fundus image 
and SLO image 

Normal/glaucoma Fundus 
images:85/39; 
Normal/glaucoma SLO images: 
46/19 

RIFM Acc for Fundus images: 94.4%,SLO images: 
93.9%;Sen for Fundus images: 92.3%,SLO images: 
89.5%;Spe for Fundus images: 95.3%,SLO images: 
93.5% 

Haleem et al. [48] 

 Visual fields 53 glaucoma eyes, 108 normal 
eyes 

FNN AUC: 92.6%, The sensitivity was 77.8%,54.6%, and 
50.0%, respectively, at the specificity of 90%, 
95%,and 99% 

Asaoka et al. [31] 

DR Fundus image Training set:76,370; Validation 
set: 112,648 

DLS For referable DR: AUC: 0.936; Sen: 90.5; Spe: 91.6%; 
For vision-threatening DR: AUC: 0.958; Sen: 100%; 
Spe: 91.1% 

Ting et al. [26] 

 Fundus image Development Data Set 
(EyePACS in the United States 
and 3 eye hospitals in India): 
128,175 Validation Data Set 
(EyePACS-1: 9,963; Messidor-2: 
1,748) 

DCNN AUC: 0.991 for EyePACS,0.990 for Messidor;Sen: 
90.3% for EyePACS,87% for Messidor;Spe: 98.1% 
for EyePACS,98.5% for Messidor 

Gulshan et al. [4] 

 Fundus image 170 DR, 170 normal PNN–GA, SVM quadratic 
kernels 

PNN-GA: Acc:99.41%,Sen:99.41% 
Spe:99.41%; SVM: Acc:99.12 % 
Sen:98.82%,Spe:99.41% 

Ganesan et al. [49] 

 Fundus image EyePACS: 75,137 DR images; 
External validation: MESSIDOR 
2 and E-Ophtha  

DCNN AUC 0.94 for Messidor 2, 0.95 for E-Ophtha;Sen 
93% for Messidor 2,87% for E-Ophtha;Spe 90% for 
Messidor 2,94% for E-Ophtha 

Gargeya et al. [50] 

 Fundus image Training set: 327 diabetic 
patients; Validation set: 725 
diabetic patients 

LASSO Acc: 89.2%; AUC: 0.90; Sen: 75%; Spe: 89.6% Oh et al. [51] 

 Fundus image Training set: 400; Testing set: 
9,954 

Ensemble of classifiers with 
hidden Markov chain for 
context information, trained 
by genetic algorithm 

Sen: 92.2%; Spe: 90.4% Tang et al. [52] 

 Fundus image Messidor-2 dataset: 1,748  CNN Referable DR: AUC: 0.980; Sen: 96.8%; Spe: 87%; 
Vision threatening DR: AUC: 0.989; Sen: 100%; Spe: 
90.8% 

Abramoff et al. [53] 

 Fundus image 4,445 DR; 5,494 normal DCNN Acc: 0.81 Takahashi et al. [54] 
 Fundus image DIARETDB1, FAZ, MESSIDOR, 

Private dataset: 750 (Normal: 
150, mild NPDR: 150, moderate 
NPDR: 150, severe NPDR: 150, 
PDR: 150) 

DNN AUC: 0.924; Sen: 92.18%; Spe: 94.50% Abbas et al. [55] 
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Disease Procedures / 
examinations 

Data sets Deep learning techniques Performance Reference 

DME SD-OCT Training set: 11,349; DEM; 
51,140 normal; Validation set: 
250 DME, 250 normal 

CNN Acc: 98.2%; Sen: 96.8%; Spe: 99.6% Kermany et al. [27]  

DME Fundus image 283 DR; 1,086 normal Ensemble of Gaussian 
mixture model and SVM with 
RBF kernel 

Acc: 96.8%; Sen: 97.3%; Spe: 95.9% Akram et al. [56] 

AMD Fundus image Training set 72,610; Validation 
set: 35,948 

DLS  AUC: 0.931; Sen: 93.2%; Spe: 88.7% Ting et al. [26] 

 Fundus image AREDS dataset: >130,000  DCNN AUC: 0.94∼0.96 Acc: 88.4%∼91.6% Sen: 
71%∼88.4% Spe: 91.4%∼94.1% 

Burlina et al. [57] 

 Fundus image AREDS dataset: 5,664  DCNN Acc 79.4% (4-class) 81.5% (3-class); 93.4% (2-class) Burlina et al. [58] 
 SD-OCT Training and validation sets: 

1,012 (AMD: 701; normal: 311); 
Test:100 (AMD: 50, normal: 50) 

DCNN Acc: 96%; Sen: 100%; Spe: 92% Treder et al. [59] 

 Fundus image 135 AMD subjects, 135 normal 
subjects 

Feature extracted by Discrete 
wavelet transform and others 
for feature selection and 
classification  

Average Acc: 93.7%; Sen: 91.11%; Spe: 96.3% Mookiah et al. [60] 

 OCT 48,312 AMD; 52,690 normal DCNN AUC: 0.975; Sen: 92.6%; Spe: 93.7% Lee et al. [61] 
 SD-OCT 1,289 CNN The mean Dice coefficient for human interrater 

reliability and deep learning were 0.750 and 0.729, 
respectively.  

Lee et al. [62] 

CNV SD-OCT Training set: 37,206 CNV, 51,140 
normal; Validation set: 250 
CNV, 250 normal 

CNN Acc: 100%; Sen:100%; Spe:100% Kermany et al. [27]  

CNV Fluorescein 
angiography 

33 AdaBoost  Accuracy: 83.26% Tsai et al. [63] 

RBFNN, radial basis function neural network; SVM, support vector machine; MLP, multi-layer perceptron; CRNN, convolutional-recursive neural networks; DCNN, 
Deep-learning convolutional neural network; BPNN, Back propagation neural network; DLS, deep learning system; CNN-FE, convolutional neural networks 
feature-exaggerated; MLP-BP, Multilayer Perceptron with Back Propagation; RIFM, Regional Image Features Model; FNN, feed-forward neural network; PNN-GA, 
probabilistic neural network-genetic algorithms; LASSO, least absolute shrinkage and selection operator; NB, naive Bayes; PNN, probabilistic neural network; RBF, Radial 
basis function; SD-OCT, spectral domain optical coherence tomography; SLO, Scanning Laser Ophthalmoscopy. Acc, accuracy; Sen, sensitivity; Spe, specificity; Vs, versus; 
AUC, area under the curve; POAG, primary open-angle glaucoma; AMD, age-related macular degeneration; OCT, optical coherence tomography; DR, diabetic retinopathy. 

 

Status of AI applications in clinical 
diagnoses 

On April 2, 2019, the FDA issued a discussion 
paper that proposed a regulatory framework for 
modifications to artificial intelligence/machine 
learning (AI/ML)-based software as medical devices 
(SaMD) [64]. This document explains the principles 
for developing artificial intelligence software, the new 
framework for equipment, the principles of the total 
product lifecycle (TPLC) certification methodology, 
and examples of potential real-world AI software 
modifications that may or may not be allowed under 
the proposed framework. The idea of the proposal 
was that with appropriately tailored regulatory 
oversight, AI/ML-based SaMD will deliver safe and 
effective software functionality that improves the 
quality of care that patients receive.  

To date, two AI algorithms have been fully 
approved by the FDA and used clinically. One is 
IDx-DR for detecting DR, and the other is Viz.AI for 
analyzing images for indicators associated with a 
stroke. These two devices are described as “locked” 
algorithms, meaning that they can only be modified 
by the manufacturer at intervals for the purpose of 
“training” with new data, followed by manual 
verification and validation of the updated algorithm. 
However, there is much promise beyond locked 
algorithms that is ripe for health care applications. 
These opportunities require careful oversight to 

ensure that the benefits of these advanced 
technologies outweigh the risks to patients. These 
machine learning algorithms can continually evolve 
and are often referred to as “adaptive” or 
“continuously learning” algorithms. Adaptive 
algorithms can learn from new user data presented to 
the algorithm through real-world use. The FDA is 
exploring a framework that would allow for 
modifications to algorithms to be made from 
real-world learning and adaptation, while ensuring 
that the safety and effectiveness of the software as a 
medical device is maintained [65]. 

Main challenges in the application of AI  
At present, there are at least four limitations in 

AI technology that is based on machine learning, First, 
most machine learning methods have too few training 
sets and verification sets. More image data training is 
needed to further improve accuracy, sensitivity, and 
specificity. Transfer learning is an approach is more 
suitable when limited training data is available for the 
problem under consideration. In transfer learning, 
one can learn a complex model using data from a 
source domain where large-scale annotated images 
are available (e.g. natural images). Then, the model is 
further fine-tuned with data of the target domain 
where only a small number of annotated images are 
available (e.g. medical images) [66] (Fig 3). 

The second limitation is that the 
examination/detection equipment used in different 
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countries, regions, and medical institutions is not 
uniform; therefore, the acquired images have 
differences in quality and resolution, which will 
inevitably affect the accuracy of image analysis and 
thus affect the accuracy of the diagnosis. These 
differences will present certain obstacles in the 
wide-scale applications of AI technology. One 
solution to this problem is to unify and standardize 
the examination equipment. This will be difficult to 
achieve. Another method is to further improve AI 
machine learning methods at the framework and 
algorithm level so that they can be flexibly applied to 
images of different qualities while simultaneously 
ensuring the accuracy of intelligent diagnosis. This 
will increase the applicability of AI in different 
regions and medical institutions. However, a lot of 
research support is still needed in this area.  

The third limitation is that the current machine 
learning methods for disease diagnosis lack 
“explanation capacity”. They do not have the ability 
to provide the clinician or other users with the reason 
for the diagnosis. The output result is based only on 
training and intensive learning. Thus, it is only a 
simple statement based upon the differences in the 
patient and normal images. There is no explanation 
for why the differences exist or the pathological basis 
of the differences. This, along with other issues, will 
affect to some extent the acceptance of these devices 
by doctors in clinical applications and could even 
provoke confusion among clinicians.  

Finally, the fourth limitation in machine 
learning-based AI technology is that the diagnosis of 
some rare diseases is still unreliable. Because of the 
scarcity of these diseases, there are not enough cases 
to meet the requirements of the training and 
verification sets. It is difficult or impossible to ensure 
the accuracy of the learning model in diagnosing rare 
diseases. To improve the diagnosis of rare diseases, it 
will be necessary to optimize machine learning 
algorithms. This can be done by transitioning from 
reliance on the number of learning samples for 
accuracy training to utilizing combinations of various 
training modes and types.  

Suggestions for the application and 
development of AI in medicine 
1. Consolidate the data foundation of AI 
applications 

AI must first collect a certain amount of data in 
the medical industry. The structure of current medical 
data is very complex, in part, because there is no 
uniformity in the standards for compilation, and this 
leads to widespread information islands. It is 
necessary to establish a mechanism for circulating and 
sharing medical data. Development of data 
desensitization methods will promote data 
standardization and normalization. These methods 
can be used to establish standard test data sets to 
consolidate the data foundations of AI applications.  

 
Figure 3. Illustrations of transfer learning: a neural network is pretrained on ImageNet and subsequently trained on retinal, OCT, X-ray images, B-scans for different disease 
classifications 
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2. Define the positioning of AI development 
In medicine, AI aims to help doctors (rather than 

substitute for doctors) to reduce the morbidity and 
mortality rates of patients waiting for professionals. 
Because doctors will not be replaced by AI, the 
diagnostic result of AI is only a reference for a clinical 
diagnosis, and doctors will always be responsible for 
the result. Currently, AI products in medicine play 
only an auxiliary role in the clinic, such as the 
diagnosis of DR, cancer screening, medical image 
recognition, disease rehabilitation, and in other fields.  

3. Formulate regulations and laws for the 
application of AI in medicine  

To achieve the uniform standards necessary for 
effective medical AI applications, laws, regulations, 
and other levels of governance must be established at 
the national level. The implementation of the national 
standards in industry and in routine and research 
clinical settings will ensure that the technology can be 
made widely and quickly available in the safest and 
most rational way. This will prudently promote the 
application of AI in the medical field.  

4. Strengthen data security of AI data 
applications 

As with the collection of any personal and 
medical data, the risk of inadvertent or pirated 
disclosure is a major concern. To reduce these risks, it 
is necessary to strengthen the construction of privacy 
protection, desensitize the data, and collect the data 
according to different levels and different 
granularities to reduce the risk of privacy disclosure. 
The United States has extensive experience in privacy 
protection of medical data. While enhancing privacy 
protection, it encourages the rational access and 
meaningful use of data and makes a selected portion 
of it available for research in real time, open access 
databases.  

5. Promote the cultivation of interdisciplinary 
talents 

Future development of AI in medicine can be 
enhanced by focusing on the integration of disciplines 
such as medicine, information science, and 
engineering. This goal can be achieved by 
encouraging universities, research institutes, and 
enterprises to cooperate with each other, set up 
appropriate scholarships, and establish training bases 
and local pilot programs. Finally, an innovative talent 
introduction system and mechanism should be 
developed to attract highly talented students to carry 
out innovation and entrepreneurship in the field of 
medical AI, thus driving the further development of 
the field. 

Future of AI application in clinic 
Machine learning has shown its great potential 

in ophthalmology. Most of the current studies 
regarding intelligent diagnosis of eye diseases focus 
on dual classification problems, whereas many 
patients suffer from multiple categorical retinal 
diseases in the clinical setting. It is therefore necessary 
to have a model for detecting and distinguishing DR, 
AMD, glaucoma, and other retinal disorders 
simultaneously [67]. 

With a new generation of AI developed as a 
broad strategy, the applications of AI in the medical 
field will increase and improve. AI plays an important 
role in disease diagnosis and treatment, health 
management, drug research and development, 
precision medicine, etc. It can contribute significantly 
to solving problems of the uneven distribution of 
medical resources, reducing costs, and improving 
treatment efficiency. Applying AI helps to make up 
for the shortcomings of insufficient medical resources, 
enhance the fairness of medical services, and improve 
the construction of hierarchical diagnosis and 
treatment. In the future, AI will also offer important 
support for establishing an integrated medical service 
system. A qualified and efficient integrated medical 
service system can be built with the help of 
information-based systems. 

Laws and regulations to define the legal status, 
responsibility sharing mechanisms, and supervision 
of automated systems are not yet enacted in China 
and most other countries. Given the complex ethical 
boundaries of medical AI application, the excessive 
control of medical AI will hinder innovation and 
development. On the other hand, the lack of 
management brings the risk of unclear subject 
responsibility in AI applications. Therefore, it is 
necessary to reasonably define AI in the medical field. 
The current laws on medical AI regulation are either 
non-existent or are in only the most primitive stages 
of development. There are no sound laws that 
regulate medical big data, the basis for medical AI. 
Further, there are no clear legal instructions regarding 
the ownership of AI data, the right to use it, privacy 
standards, data security, accountability norms, and 
whether laws can protect researchers, clinicians, and 
engineers from errors of innovation.  

Summary 
Deep learning has the ability to probe more 

deeply into and discern more discriminative features 
from extremely large datasets. It has been applied in 
many research and clinical fields that rely on medical 
image analysis, making breakthrough progress in 
those disciplines. Due to unique features in 
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ophthalmology, the diagnosis of eye diseases in 
clinical practice requires interpretation of many 
imaging studies for auxiliary diagnosis. However, 
detection resolution of the human eye is limited and 
so is human attention span. Proficiency levels of 
ophthalmologists also differ and it’s inevitable for 
human errors to occur. As documented in the existing 
literature review, most of the current deep learning 
methods representing the leading level are the use of 
supervised learning, especially the CNN-based 
framework. Preliminary researches mainly focused on 
pre-training CNN and taking CNN as feature 
extractor. These pre-training networks could be 
downloaded directly, and conveniently applied to the 
analysis of any medical images. In recent two years, 
end-to-end training CNN has become a prioritized 
approach for the analysis of medical images. 
However, obtaining well-annotated data used for 
supervised learning is another major challenge for the 
application of deep learning to the analysis of medical 
images. As annotated data were usually limited at 
present, how to utilize unannotated images to achieve 
a high diagnostic accuracy using a combination of 
unsupervised and supervised learning will be another 
important development direction. In addition, 
electronic medical records (EMRs) contain a wealth of 
clinical diagnostic and treatment information that can 
be extracted and used to form diagnoses using natural 
language processing and deep learning. This 
information can be used to supplement the image 
data to formulate a complete diagnosis mimicking a 
human physician [68]. Thus, in the near foreseeable 
future, AI relying on deep learning will combine 
image analysis with EMRs, further advancing the 
diagnostic power and ability to monitor disease 
progression and response to treatment in ways never 
before anticipated. 
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