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Abstract 

Immunostimulatory agents, including adjuvants, cytokines, and monoclonal antibodies, hold great 
potential for the treatment of cancer. However, their direct administration often results in 
suboptimal pharmacokinetics, vulnerability to biodegradation, and compromised targeting. More 
recently, encapsulation into biocompatible nanoparticulate carriers has become an emerging 
strategy for improving the delivery of these immunotherapeutic agents. Such approaches can 
address many of the challenges facing current treatment modalities by endowing additional 
protection and significantly elevating the bioavailability of the encapsulated payloads. To further 
improve the delivery efficiency and subsequent immune responses associated with current 
nanoscale approaches, biomimetic modifications and materials have been employed to create 
delivery platforms with enhanced functionalities. By leveraging nature-inspired design principles, 
these biomimetic nanodelivery vehicles have the potential to alter the current clinical landscape of 
cancer immunotherapy. 
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1. Introduction 
The immune system, which is composed of 

different subsets of specialized immune cells, is highly 
efficient at eliminating exogenous material. The 
specific recognition of foreign antigens is mediated by 
professional antigen-presenting cells (APCs), which 
can present major histocompatibility complex 
(MHC)-restricted epitopes to T cells in the presence of 
costimulatory markers to promote both cellular and 
humoral immune responses [1, 2]. While this process 
can be easily leveraged to effectively address 
infections caused by common pathogens, antitumor 
immunity is much more difficult to elicit. Although 
many tumor-associated antigens (TAAs) have been 
identified, they are generally lowly immunogenic [3]. 
Tumors also develop a variety of mechanisms that 
enable them to subvert immune attack [4, 5]. Through 
their ability to express immunosuppressive signaling 

molecules, modulate the functions of nearby immune 
cells, and change their phenotypes, tumor cells can 
escape from immune surveillance and continue to 
proliferate. Current cancer immunotherapies often 
work by rejuvenating the immune system in a manner 
that enables it to address the challenges associated 
with tumor immune escape, and many of these 
approaches have started to gain traction in the clinic 
[6]. Whether they work by unleashing the functions of 
T cells [7], depleting immunosuppressive immune cell 
populations [8], or by modulating the characteristics 
of the tumor microenvironment [9], the common goal 
shared by most modern cancer immunotherapies is to 
augment endogenous immunity to ultimately 
overcome malignant growths. 

In general, the introduction of 
immunomodulatory compounds into the tumor 
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microenvironment or surrounding immune-rich 
tissues is a promising means of elevating antitumor 
immunity. Here, we discuss the use of nanocarriers to 
enhance the delivery of these agents, which include 
adjuvants, secretory cytokines, and antibodies (Figure 
1). Adjuvants are synthetic or naturally occurring 
compounds that are capable of activating pathogen 
recognition receptors (PRRs) found on APCs, thus 
generating strong proinflammatory responses [10]. 
They can be administered along with antigenic 
material to generate potent tumor-specific responses 
and have also been explored as monotherapies 
capable of nonspecifically boosting immune activity. 
Cytokines are employed by a broad range of immune 
cells for signaling and communication and can exert 
immunomodulatory effects in complex ways [11]. If 
used correctly, cytokines can directly stimulate 
immune effector cells at the tumor site and enhance 
tumor cell susceptibility to immune attack. 
Depending on the specific pathway being targeted, 
monoclonal antibodies (mAbs) can be used to 
antagonize immunosuppressive interactions or to 
promote immune stimulation [12]. While adjuvants, 
cytokines, and mAbs all hold significant promise as 
anticancer therapeutics, these compounds can still 
benefit greatly from the increased specificity and 
enhanced safety afforded by nanodelivery platforms. 
In particular, emerging biomimetic technologies have 
the potential to provide improved functionality and to 
significantly enhance the potency of 
immunotherapeutic payloads, and these platforms 
will be covered in detail in this review. 

2. Immunostimulatory Agents 
2.1 Molecular Adjuvants 

A number of different adjuvants that can 
stimulate the immune system are being developed 
and tested in clinical trials [13]. One of the most 
popular targets for these compounds are Toll-like 
receptors (TLRs), which are expressed on APCs such 
as macrophages and dendritic cells (DCs) [14]. TLRs 
have evolved to recognize specific molecular patterns 
from foreign microorganisms that act as danger 
signals to the immune system [15]. TLR engagement 
can induce various gene expression profiles 
depending on the type of receptor and the type of 
stimuli, affecting both the innate immune response 
and adaptive immunity. One common target is TLR9, 
which can be activated by short single-stranded DNA 
with unmethylated CG motifs, referred to as CpG 
oligodeoxynucleotides (ODNs) [16]. There are three 
classes of CpG ODNs, each of which has different 
biological activities [17]. Some can be used as potent T 
helper cell type 1 (Th1)-biasing adjuvants and have 

shown great potential in cancer therapy. Another 
popular TLR target is TLR4, which can be activated by 
adjuvants such as lipopolysaccharides (LPS) [18]. 
Because LPS exhibits significant toxicity, a less toxic 
derivative, monophosphoryl lipid A (MPLA), was 
developed by removing a phosphate residue. As a 
result of this modification, MPLA exhibits 1000-fold 
decreased toxicity compared to LPS and has been 
employed in some clinically explored vaccine 
formulations [19-21]. Although LPS and MPLA both 
target TLR4, they can be associated with different 
cytokine secretion profiles [22]. 

Adjuvants that target other TLR pathways are 
also actively being researched. For example, poly(I:C) 
can activate TLR3 by mimicking viral RNAs [23]. 
Poly(I:C) is a synthetic double-stranded RNA that has 
been extensively tested against diseases such as 
human immunodeficiency virus, dengue, malaria, 
and cancer. Since RNAs are inherently susceptible to 
degradation by RNase, poly(I:C) has been complexed 
with stabilizing molecules such as polylysine to 
prevent enzymatic degradation [24]. Adjuvants that 
activate TLR5 include flagellin, which is a protein 
present in bacterial flagella [25]. Flagellin alone can 
induce tumor necrosis factor-α (TNFα) production 
and can elicit high antibody titers when combined 
with vaccine antigens. Some imidazoquinoline 
derivatives with antiviral properties can activate 
TLR7 and TLR8 by mimicking single-stranded RNAs 
[26]. For example, imiquimod (R837) activates TLR7 
and resiquimod (R848) activates both TLR7 and TLR8, 
resulting in type I interferon (IFN) and interleukin-12 
(IL12) production. R837 was approved by the United 
Stated Food and Drug Administration (FDA) and has 
been used in actinic keratosis [27], basal cell 
carcinoma [28], and genital warts [29] treatments. 

Other targets for adjuvants include 
nucleotide-binding oligomerization domain 
(NOD)-like receptors and stimulator of interferon 
genes (STING) present on immune cells. NOD-like 
receptors regulate inflammation and innate immunity 
via inflammasomes [30]. Synthetic adjuvants such as 
muramyl dipeptide can activate NOD2, which leads 
to the production of proinflammatory cytokines such 
as TNFα, IL1, IL6, and IL8 [31]. STING senses cyclic 
dinucleotides and nucleic acids of viral or bacterial 
origin [32]. Activation of the STING pathway can lead 
to type I IFN secretion during infection [33]. Cyclic 
di-AMP and cyclic di-GMP are cyclic dinucleotides 
originating from bacteria that have been used as 
STING agonists in vaccine development [34]. These 
cyclic dinucleotides induce type I IFN and 
NF-κB-mediated cytokine production, helping to 
enhance antigen-specific T cell and humoral immune 
responses. 
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Figure 1. Delivery of immunotherapeutic payloads using biomimetic nanocarriers. Immunostimulatory agents such as adjuvants can be loaded along with antigenic material into 
biomimetic nanodelivery vehicles to enable enhanced delivery to specific immune cell subsets like antigen-presenting cells (APCs). Upon successful delivery, downstream immune 
processes such as T cell stimulation can be initiated to generate antitumor responses. 

 

2.2 Cytokines 
Cytokines are proteins employed in immune 

signaling, and they have been widely leveraged for 
their immunomodulatory effects [11]. Many of the 
cytokines from the IFN and IL families are in clinical 
use or in clinical trials. IFNs are classified into three 
categories based on the receptors to which they bind. 
IFNα and IFNβ are popular examples of type I IFNs 
that are used as immune stimulating agents [35]. IFNα 
has been approved by the FDA as an adjuvant therapy 
for stage III melanoma. The cytokine promotes MHC 
class I expression, which leads to better tumor antigen 
recognition. In preclinical cancer models, IFNβ has 
shown its potential as an immunostimulatory agent, 
as well as its ability to suppress autoimmune 
reactivity. However, it has yet to be applied in the 
clinic due to its low bioavailability and side effects. 
IFNγ is the only member of the type II IFNs [36]. It 
promotes MHC expression in macrophages and 
induces the expression of costimulatory molecules on 
APCs. IFNγ can also promote the Th1-biased 
differentiation of CD4+ T cells and inhibit 
IL4-dependent isotype switching in B cells. Type III 
IFNs, which include the IFNλ group of molecules, are 
relatively new compared to type I or type II IFNs [37]. 
Although it is known that IFNλ plays a role in certain 
antiviral immune responses, its potential as an 
immunostimulatory therapeutic has yet to be fully 
explored. 

Among the ILs, IL2 has been approved by the 
FDA for use in treating metastatic melanoma [38] and 
renal cell carcinoma [39]. IL2 promotes the activation 
and expansion of CD4+ and CD8+ T cells, as well as 
the proliferation of natural killer (NK) cells. Not only 
does IL2 activate immune responses, but it can also 
act as a mediator of immune tolerance by suppressing 
T cell responses [40]. Another clinically relevant IL is 
IL12, which acts as a growth factor for activated NK 
and T cells and promotes production of IFNγ [41]. 
IL12 can also help CD4+ T cells to differentiate into a 
Th1 phenotype and increases the activity of CD8+ 
cytotoxic T lymphocytes (CTLs). Although IL12 has 

gone through various preclinical investigations and 
showed anti-angiogenic efficacy mediated by IFNs, it 
has yet to be translated. 

2.3 Monoclonal Antibodies 
Apart from adjuvants and cytokines, mAbs 

represent another means of achieving immune 
modulation. They offer certain advantages, including 
high specificity, resistance against degradation in 
serum, and long circulation times [42]. As 
immunostimulatory agents, mAbs can specifically 
activate (agonistic mAbs) or suppress (antagonistic 
mAbs) certain cellular pathways, making them a 
compelling tool to explore [43]. Anti-CD28 can 
stimulate immune responses by interacting with its 
target, which is constitutively expressed on most 
resting CD4+ T cells and a significant portion of CD8+ 
T cells [44]. This agonistic interaction triggers 
signaling cascades that promote proliferation, 
cytokine production, anti-apoptotic gene expression, 
and energy metabolism. In most cases, anti-CD28 
mAbs cannot work alone and their use must be 
accompanied by antigen-dependent T cell receptor 
(TCR)-mediated signals in order to properly activate T 
cells. 4-1BB, also known as CD137, can be found on T 
cells, NK cells, DCs, mast cells, and sometimes 
endothelial cells of metastatic tumors [45]. Use of 
anti-4-1BB to engage this receptor triggers signaling 
pathways that lead to increased expression of 
anti-apoptotic genes. Similar to 4-1BB, OX40 is 
another member of the TNF receptor superfamily, and 
anti-OX40 mAbs can be used to stimulate CD4+ and 
CD8+ T cells [46]. Activation of OX40 signaling in T 
cells can lead to enhanced proliferation and increased 
cytokine production. Another important TNF 
receptor is CD40, which is expressed on, but not 
limited to, B cells, DCs, macrophages, T cells, vascular 
endothelium, and some types of cancer cells [47]. 
CD40 ligation is crucial in the humoral immune 
response and anti-CD40 mAbs can be used to 
stimulate antitumor activity. A prominent mechanism 
of this antitumor activity is the activation of the 
antigen-presenting DC network. Lastly, 
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glucocorticoid-induced TNF receptor (GITR) is a 
costimulatory molecule that is expressed on activated 
T cells [48]. Anti-GITR can activate GITR to increase 
the proliferation, activation, and cytokine production 
of CD4+ and CD8+ T cells. 

Antagonistic mAbs can be used to downregulate 
or disrupt certain immune pathways that promote 
tumor growth [49]. Checkpoint blockade therapies 
based on this type of approach have experienced a 
significant amount of success in clinical settings [50]. 
PD-1, which is a member of the CD28 family, is a 
co-inhibitory receptor and is upregulated when CD4+ 
T cells, CD8+ T cells, B cells, and monocytes are 
activated [51]. Engagement with its ligand, referred to 
as PD-L1, inhibits T cell activation and proliferation, 
causing cell-cycle arrest but not apoptosis. The use of 
anti-PD-1 and anti-PD-L1 mAbs to recover 
CTL-mediated antitumor effects is an approach that 
has been widely explored in the clinic. Similarly, 
cytotoxic T lymphocyte-associated protein 4 (CTLA-4) 
is also homologous with the costimulatory receptor 
CD28 [52]. CTLA-4 protein expression is upregulated 
when T cells interact with presented versions of their 
cognate antigens, and this in turn leads to a decrease 
in T cell activation. One of the most notable 
mechanisms by which CTLA-4 achieves T cell 
inhibition is by outcompeting CD28 for ligand 
binding, thus decreasing costimulation. In terms of 
cytokines, IL10 can be a compelling target since one of 
its main roles is to help avoid excessive immune 
activation, such as in autoimmune diseases [53]. IL10 
is produced by various myeloid and lymphoid cells 
and it suppresses macrophage and DC function, 
which leads to decreased activity and cytokine 
production. High levels of IL10 can lead to various 
pathologies, and IL10 antagonists have the potential 
to be used against chronic infection or cancer. Other 
novel immune checkpoint markers, including 
lymphocyte-activation gene 3 [54], T cell 
immunoglobulin- and mucin-domain-containing 
molecule 3 [55], T cell immunoreceptor with 
immunoglobulin and ITIM domains [56], V-domain 
immunoglobulin-containing suppressor of T cell 
activation [57], and B7/H3 [58], are also actively being 
investigated. 

3. Current Delivery Strategies 

3.1 Benefits of Particulate Delivery 
Despite their promise as therapeutics, 

immunostimulatory agents usually suffer from 
suboptimal pharmacokinetics, vulnerability to 
biodegradation, and compromised cell targeting 
when directly administered into the body [59]. Their 
nonspecific interactions with proteases, nucleases, 

and immune cells not only reduce 
immunostimulatory capacity, but can often result in 
safety concerns and lead to excessive inflammation, 
toxicity, and hypersensitivity [60]. Thus, there has 
been high demand for methods to effectively deliver 
immunostimulants to their target cell populations 
with minimal exposure to the surrounding biological 
environment. Emerging delivery strategies based on 
nanoparticle platforms offer an effective means of 
addressing the underlying issue, whereby payloads 
are complexed with biocompatible nanomaterials 
[61]. The formulation of immunostimulatory payloads 
into nanocarriers can help to improve immune 
tolerance throughout the transport process, while also 
enhancing immune stimulation upon delivery to the 
appropriate immune cells. 

The nanodelivery of immunostimulatory agents 
offers several benefits compared with use of the same 
compounds in their free form. First, payload 
entrapment and protection by a nanoparticle matrix 
minimizes the chance of interference caused by 
degradative agents and nonspecific cellular 
interactions [62]. This helps to prolong circulation 
half-life and enhances the biological stability of the 
payload, both of which are crucial for maximizing 
downstream immune stimulation. Second, owing to 
the relatively small size of nanocarriers, the 
encapsulated payloads can more readily localize and 
accumulate at tumor sites or immune-rich tissues via 
common administration routes. For example, the 
subcutaneous administration of nanocarriers enables 
efficient transport to the draining lymph nodes, where 
the resident immune cells can be readily manipulated 
[63, 64]. Furthermore, targeting capability towards 
specific immune cell populations can greatly enhance 
the efficacy of immunostimulant delivery, since most 
immunostimulatory agents act on specific pathways 
that are only relevant to certain cell subsets [65]. By 
leveraging proper materials design, nanoparticulate 
platforms can be synthesized with specific targeting 
functionality and controllable release to greatly 
improve payload bioavailability and ensure immune 
activation at minimal dosages of the active ingredient 
[66, 67]. A final advantage of nanocarriers is their 
ability to co-deliver immunostimulants and antigens 
together using the same particulate platform, which 
can improve the antigen presentation process and 
lead to better T cell stimulation [2, 68]. 

3.2 Current Delivery Platforms 

3.2.1 Polymers 
Polymeric carriers represent one of the most 

prevalent and well-studied immunostimulant 
delivery vehicles. Polymers offer a wide range of 
conjugation and encapsulation options, and many 
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have excellent biocompatibility profiles that make 
them a safe option for immunotherapy. Additionally, 
nanoscale polymeric delivery systems have the 
inherent ability to improve cancer immunotherapy 
because of their tendency to accumulate in tumor sites 
via the enhanced permeation and retention (EPR) 
effect [69]. Polymeric platforms have been widely 
used for the delivery of adjuvant payloads. For 
instance, R837, along with a near-infrared dye, were 
co-encapsulated into a polyethylene glycol (PEG)–
poly(lactic-co-glycolic acid) (PLGA) nanoparticle via 
an oil-in-water emulsion (Figure 2) [70]. Here, the 
photothermal therapy component of the platform 
acted not only as a means of reducing tumor cell 
counts, but also primed the site for immune activity 
by generating tumor antigens for immune cell uptake. 
While free adjuvants in general cannot specifically 
accumulate into tumors, the R837-loaded polymeric 
nanoparticles benefited from the EPR effect and 
showed preferential tumor accumulation after 
intravenous injection. When administered in 
combination with anti-CTLA-4 mAbs, which helped 
to reverse the immunosuppression caused by 
regulatory T cells, the nanoformulation greatly 
inhibited the growth of secondary tumors, and mice 

were resistant to re-challenge, proving the long-term 
memory effects of the treatment.  

A promising immunotherapeutic approach has 
been to combine checkpoint inhibitor treatment 
together with local DC activation using adjuvants 
[71]. While the direct administration of adjuvants that 
are capable of activating DCs by triggering their PRRs 
have been explored, severe adverse effects and 
expedited clearance have limited the clinical 
application of this strategy [72]. To improve 
translational potential, nanocarriers based on a block 
copolymer made of methoxytriethyleneglycol 
methacrylate and pentafluorophenyl methacrylate 
have been functionalized with TLR7/8 agonists 
capable of locally activating DCs in the tumor site 
[73]. When combined with checkpoint blockades, the 
combination treatment was able to stall tumor growth 
in a B16 melanoma mouse model by eliciting DC 
activation and subsequent antitumor immunity. On a 
similar note, adjuvants can be useful agonists for the 
maintenance of antitumor activity after tumor 
resection. Because post-operation healing can often 
promote metastasis [74], maintaining an 
immunostimulatory microenvironment at the tumor 
site is critical. 

 

 
Figure 2. Adjuvant delivery using polymeric nanoparticles for combination therapy. (A) Poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with R837 and indocyanine 
green (ICG) can be used to generate tumor antigens and promote transition of DCs from an immature (iDC) to mature (mDC) phenotype. The antitumor effect can further be 
enhanced through the inclusion of checkpoint blockades such as anti-CTLA-4. (B) The nanoformulation can be used to induce drastic temperature changes at tumor sites upon 
irradiation. (C) Photothermal therapy together with CTLA-4 blockade delays the growth of secondary tumors. Adapted with permission from [70]. Copyright 2016 Nature 
Publishing Group. 
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OX40 is an important TNF receptor on the 
surface of some activated immune cells and helps to 
regulate, among others, both CD4+ and CD8+ T cells 
[75]. Engagement of OX40 leads to proinflammatory 
cytokine production and T cell expansion; however, 
clinical trials using anti-OX40 mAbs have shown that 
the nonspecific nature of this immune activation 
makes it ineffective against lowly immunogenic 
tumors [76]. As a result, better antibody delivery 
systems capable of increasing T cell priming and 
immune cell exposure are of great need. In one 
example, anti-OX40 mAbs were attached to PLGA 
nanoparticles by chemical conjugation onto the 
surface [77]. These antibody-conjugated polymeric 
nanoparticles promoted increased proliferation and 
activation of CTLs in vitro  when compared to mAbs 
alone, demonstrating the advantages of the 
nanoparticulate formulation. To add additional 
biological functionality, an antagonist antibody 
capable of blocking checkpoint inhibitors has also 
been conjugated onto the nanoparticle surface [78]. A 
combination of anti-PD-L1 and anti-OX40 were 
attached onto PEGylated PLGA nanoparticles via 
thiol-maleimide chemistry (Figure 3). With both 
antibodies conjugated onto the same nanoparticle 
surface, T cells could interact with them 
simultaneously, thereby increasing activation, 
efficacy, and memory functionalities. Improved 
immunotherapeutic responses compared with a free 

antibody mixture or single-antibody formulations 
were demonstrated in two murine models, 
highlighting the benefits of presenting both 
checkpoint inhibitors and immunostimulatory 
antibodies together on the same nanoparticle. 

Acetalated dextran has recently been shown to 
have properties that can be used to modulate various 
immunological pathways, making it an good material 
for developing cancer immunotherapies [79]. Due to 
its highly tunable degradation rate, different versions 
of the polymer can be used to promote antigen 
cross-presentation through either transporter 
associated with antigen processing (TAP)-dependent 
or TAP-independent pathways. In addition to its 
pH-responsive and biodegradable properties, 
acetalated dextran is better than traditional polymer 
systems in its ability to efficiently load hydrophilic 
drugs [80]. In one study, it was shown that acetalated 
dextran microparticles encapsulating either CpG 
ODN or poly(I:C) had higher loading efficiencies and 
elicited stronger in vitro  immune responses when 
compared to their PLGA counterparts [81]. Being 
pH-sensitive, acetalated dextran dissolves quickly 
under acidic conditions but remains stable at 
physiological conditions. This property can be taken 
advantage of in order to enhance adjuvant delivery to 
TLR receptors that reside in the acidic lysosomal 
compartments of APCs. 

 

 
Figure 3. Dual delivery of antibodies for immune stimulation. (A) Anti-PD-1 and anti-OX40 mAbs can be co-delivered using a dual immunotherapy nanoparticle (DINP) design. 
The anti-PD-1 acts as an antagonist that reverses T cell exhaustion, while the agonistic anti-OX40 further promotes cell activation. (B) The DINP formulation improves the 
efficacy of combination immunotherapy in vivo . Adapted with permission from [78]. Copyright 2018 Wiley-VCH. 
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3.2.2 Liposomes 
Liposomes represent a popular choice for 

improving the biocompatibility and therapeutic 
lifetime of immunostimulatory agents. Payloads can 
be conjugated onto the liposomal membrane or 
loaded into the center, either directly or via an inner 
core material around which the liposome is coated. 
Recent efforts have taken advantage of liposomal 
carriers to deliver various immunostimulants to 
enhance their immune activating properties [82, 83]. A 
major clinical limitation of the direct use of cytokines 
and mAbs is their systemic toxicity, specifically on 
circulating lymphocytes. To overcome this challenge, 
nanoscale particles have been leveraged for their 
passive targeting capabilities to more specifically 
deliver these agents to tumor sites. In one recent 
example, PEGylated liposomes with IL2 and 
anti-CD137 mAbs were fabricated [84]. The 
immunostimulatory liposomes had remarkable tumor 
accumulation and improved anti-CD137 mAb and IL2 
localization compared with their soluble forms. 
Ultimately, the formulation was successful in 
delaying tumor growth without adverse effects, 
indicating an improved safety profile. 

3.2.3 Emulsions 
Oil-in-water emulsions have demonstrated the 

ability to positively modulate immune responses, and 
their use as adjuvants has achieved clinical success 
[85]. Among other immune stimulation mechanisms, 
their ease of deformation allows for the lateral 
movement of antigens, which can enhance uptake and 
activation in APCs. More recent oil-in-water emulsion 
platforms have incorporated additional payload 
molecules to further improve immunotherapeutic 
potential. For example, polymer–squalene emulsions 
loaded with CpG ODN and model antigens have been 
used to generate antigen-specific T cell responses and 
promote tumor regression [77, 86, 87]. Alternatively, 
water-in-oil emulsions can also provide 
immunostimulatory properties, although the effects 
are generally more localized to the site of injection. In 
one instance, anti-CTLA-4 antagonistic mAbs and 
anti-CD40 agonistic mAbs were loaded into 
water-in-oil emulsion microparticles [88]. Due to the 
large size of the particles, these water-in-oil 
microemulsions provided a depot for localized and 
sustained therapeutic release when injected adjacent 
to the tumor site. 

3.2.4 Hydrogels 
Nanosized hydrogels, or nanogels, have been 

recognized as an excellent type of material for 
biomolecule delivery. They have certain advantages 
over other nanocarriers and are particularly 

well-suited for biomolecule encapsulation [89]. 
Nanogels can be made by the self-assembly of 
amphiphilic polysaccharides, and platforms based on 
cholesterol-bearing pullulan (CHP) have been studied 
for cancer immunotherapy applications [90]. In one 
example, CHP nanogels were shown to drain to 
nearby lymph nodes upon subcutaneous 
administration, efficiently delivering their tumor 
antigen payload to APCs and eliciting strong 
antitumor immunity [91]. Even without the 
co-administration of adjuvants, CHP nanogel TAA 
formulations have been shown to elicit both cell-based 
and antibody responses [92]. Other nanogel systems 
have also been reported for cancer immunotherapy. 
For instance, a bioreducible cationic 
alginate-polyethylenimine nanogel was used to 
encapsulate ovalbumin (OVA), and the resulting 
nanovaccine was readily taken up by DCs, which 
enabled presentation of the antigen to lymphocytes 
for eliciting both humoral and cellular immune 
responses [93]. To provide additional immune stimuli 
to nanogel systems, adjuvants can be crosslinked into 
the particle matrix. In an example using CpG ODN 
with a β-glucan nanogel, the resulting formulation 
induced much stronger antigen-specific Th1 responses 
than β-glucan nanogel alone [94]. Specifically, mice 
preimmunized with an adjuvanted and 
antigen-loaded formulation exhibited a long delay in 
tumor growth and improved survival after tumor 
inoculation. 

In addition to adjuvants, cytokines can also be 
incorporated into nanogels. For example, recombinant 
murine IL12 was successfully incorporated into a 
CHP nanogel through simple incubation at room 
temperature [95]. After subcutaneous administration, 
the nanogel enabled the sustained release of IL12 into 
the bloodstream, which led to a prolonged elevation 
in IL12 serum levels. Repetitive administration of the 
formulation drastically retarded the growth of tumors 
without any apparent adverse effects. In another 
work, IL12 was encapsulated inside a modified CHP 
nanogel using a thiolated PEG as a crosslinker [96]. 
The formulation hydrolytically degraded under 
physiological conditions, which resulted in the 
prolonged release of IL12 over time. After 
subcutaneous administration in mice, high IL12 levels 
were detected in the plasma. A nanosized core–shell 
liposomal polymeric gel has been developed for the 
co-delivery of a hydrophobic drug and a hydrophilic 
cytokine in the same system [97]. 
Methacrylate-conjugated β-cyclodextrin was used to 
solubilize a transforming growth factor-β (TGFβ) 
inhibitor, and the drug-complexed β-cyclodextrin was 
then co-loaded inside a liposome shell along with IL2 
and a biodegradable cross-linker (Figure 4). After 



Theranostics 2019, Vol. 9, Issue 25 
 

 
http://www.thno.org 

7833 

photopolymerization, the formed hydrogel was able 
to deliver the two payloads into the tumor 
microenvironment in a sustained fashion. The release 
of the TGFβ inhibitor and IL2 significantly delayed 
tumor growth by promoting NK cell activation and 
CD8+ T cell infiltration in a murine B16F10 melanoma 
model. 

3.2.5 Gold Nanoparticles 
Overall, gold nanoparticles (AuNPs) are 

accepted as a promising delivery platform due to their 
relative safety and tunable nature [98]. They can also 
increase the potency and decrease the toxicity of 
immunotherapeutics due to enhanced accumulation 
in tumor sites via the EPR effect. In an example, 
AuNPs were used as substrates for multilayer 
coatings made by the layer-by-layer assembly of 
immune signals [99]. Built through electrostatic and 
hydrophobic interactions, this polyelectrolyte 
self-assembled formulation contained poly(I:C) 
adjuvant and peptide antigens. Similar to other 
nanovaccine platforms, the co-delivery of adjuvant 
and antigen acted synergistically to provide greater 
expansion of CD8+ T cells when compared to 
immunization with a simple mixture of the 
components. The AuNP core also provided an 
appropriately sized substrate to aid in efficient uptake 
by APCs. The introduction of active targeting moieties 

can further improve potency and safety, offering the 
opportunity for active cytokine delivery without 
systemic toxicity. For example, AuNPs conjugated 
with a tumor homing peptide that recognizes and 
binds to CD13 on tumor endothelium were shown to 
effectively carry and release TNFα  in vivo  [100]. 
Notably, administration of free cytokine at the same 
dosage showed no activity, highlighting the benefits 
of nanodelivery. 

AuNPs may provide additional functionalities to 
antibody-based cancer immunotherapy, particularly 
given their ability to be used as contrast agents for 
computed tomography (CT) imaging and as 
transducers for photothermal therapy. When 
conjugated with checkpoint inhibitors, AuNPs can be 
made into theranostic platforms. In one example, 
anti-PD-L1-conjugated AuNPs were administered to 
tumor-bearing mice [101]. When the mice underwent 
a CT scan, the signal correlated well with tumor 
growth and T cell infiltration, providing evidence that 
the formulations could be effectively used to predict 
treatment outcomes. In addition to CT imaging, 
AuNPs also exhibit surface plasmon resonance in the 
near-infrared range, thus enabling their use for 
photothermal therapy in combination with 
chemoimmunotherapy [102]. 

 

 
Figure 4. Dual delivery of immunostimulatory payloads using liposomal polymeric nanogels. (A) IL2 and a TGFβ inhibitor, SB505, complexed with cyclodextrin (CD) are loaded 
inside a biodegradable polymer hydrogel and coated with liposomal material to form a nanolipogel (nLG). (B) The dual-loaded nLG formulation enables significant control of 
tumor growth and extends survival in a cancer model. Adapted with permission from [97]. Copyright 2012 Nature Publishing Group. 
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3.2.6 Mesoporous Silica 
Mesoporous silica nanoparticles (MSNs) have 

been studied in the field of nanomedicine. Unlike 
conventional aluminum adjuvants, MSNs can be 
easily doped with components that can improve their 
biodegradability and biocompatibility profiles [103, 
104]. Owing to the intrinsic high payload 
encapsulation capacity afforded by their porous 
structures, MSNs can act as delivery vehicles for a 
variety of immunostimulatory agents. In the case of 
adjuvants, combination therapies based on MSNs 
appear to be an effective approach. In one example, 
liposome-coated MSNs were loaded with doxorubicin 
and oxaliplatin as apoptosis inducers along with 
indoximod, an immunometabolic adjuvant that can 
interfere with immunosuppressive pathways in the 
tumor microenvironment [105]. These particles 
benefited from increased circulation half-life and 
passive tumor targeting due to their biocompatible 
nature and nanoscale size. In a luciferase-expressing 
orthotropic pancreatic cancer model, tumor growth 
was significantly controlled with this combination 
therapy, and antigen-specific CTLs were clearly 
present. 

MSNs may also provide a platform for reducing 
the systemic toxicity of encapsulated payloads, a 
necessity for the clinical use of many cytokines. For 
instance, the biologically active dosage of TNFα is one 
order of magnitude higher than the maximal 
permitted dosage for intravenous administration 
[106]. To overcome this hurdle, MSNs can be 
functionalized to shield and control TNFα delivery. In 
an example, MSNs were fabricated with a 
pH-sensitive copolymer that acted as a gatekeeper 
[107]. This platform enabled high drug loading in the 
mesopores of the MSNs and localized release, which 
was facilitated by the acid-triggered degradation of 
the copolymer. It has also been shown that 
mesoporous silica itself can act as a costimulant, 
provoking Th1 immunity and inducing both primary 
and memory immune responses [108]. Its adjuvancy is 
heavily dependent on size and porosity. While 
maintaining high loading capacity and 
biocompatibility, large-pore MSNs capable of 
inducing strong immune responses when combined 
with photothermal agents and model antigens have 
been fabricated [109]. Importantly, when compared 
directly to their silica counterparts, the MSNs 
generated a higher frequency of CD4+ and CD8+ T 
cells, highlighting the adjuvanting properties of 
particles. In a final example of MSN usage, 
biodegradable glutathione-depleted dendritic 
mesoporous organosilica nanoparticles were loaded 
with a model antigen and CpG ODN [110]. Here, not 

only were the MSNs able to deliver their contents 
intracellularly, but they were also used to neutralize 
intracellular glutathione, leading to an excess 
generation of reactive oxygen species that served to 
further intensify immune responses. 

4. Biomimetic Delivery Strategies 

4.1 Introduction to Biomimetic Delivery 
Particulate delivery systems have demonstrated 

the ability to enhance the bioavailability of 
immunostimulants and can promote increased 
immune activation; however, conventional platforms 
can still be limited by certain pitfalls. For instance, in 
spite of effective incorporation into delivery systems, 
some of these immunostimulatory agents still need to 
be delivered in large quantities to achieve the desired 
effects, which necessitates the use of delivery 
platforms with high loading yields [111]. Finding 
alternative solutions to achieve better immune 
stimulation at lower dosages would thus be highly 
beneficial. Another challenge with many conventional 
delivery platforms is that they are still regarded as 
foreign by the immune system, which can lead to 
rapid immune clearance or unwanted immune 
responses [112]. Furthermore, delivery of 
immunostimulant payloads to the appropriate 
immune cell populations is essential for proper 
immune activation. As such, targeted delivery 
approaches could ensure better immune recognition 
and augment overall immune responses [113]. 

An ideal immunostimulant delivery platform 
would interact minimally with irrelevant cells but 
elicit strong immune stimulation upon reaching target 
immune cells [114]. As a result, on-demand immune 
activation could be achieved without compromised 
safety or tolerability parameters. Recently, biomimetic 
nanodelivery platforms have been increasingly 
employed for the delivery of immunostimulatory 
agents because of their ability to readily fulfill some of 
these design requirements [115-118]. Biomimetic 
modifications or delivery vehicles have the potential 
to significantly improve upon the overall delivery 
efficiency and subsequent immune responses 
associated with current delivery platforms. In this 
section, three general approaches for achieving 
biomimetic delivery will be discussed in depth 
(Table 1). 

4.2 Biomimetic Modifications 
Biological targeting functionality can be 

achieved by employing naturally occurring moieties 
to modify the surface of nanoparticles, thus enhancing 
uptake efficiency by target immune cells. These 
modifications are oftentimes achieved through 
chemical conjugation or physical incorporation 
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processes that are easy to implement and highly 
controllable [66]. One representative ligand is 
mannose, which has affinity to receptors that are 
abundant on APCs [119]. Mannose receptors on 
macrophages and DCs enhance affinity towards the 
cell surface of microorganisms, facilitating their 
uptake and subsequent presentation to T cells [120]. 
When mannose is attached as a targeting ligand to 
immunostimulant delivery platforms, these 
mannosylated vehicles can be readily recognized and 
internalized by APCs, resulting in enhanced immune 
stimulation. In one example, a vaccine delivery 
system based on mannosylated chitosan microspheres 
was formulated for intranasal mucosal vaccination 
[121]. Compared to unmodified particles, the 
mannosylated microspheres could tightly bind with 
mannose receptors on murine macrophages and 
stimulated immunoglobulin production. Similarly, a 
PEG-sheddable, mannose-modified polymeric 
nanoparticle platform has been assembled and shown 
to efficiently target tumor-associated macrophages 
after PEG shedding in the acidic tumor 
microenvironment [122]. In a case of DC targeting, 
mannose was used to modify lipid–calcium 
phosphate nanoparticles, which contained the Trp2 
melanoma self-antigen and CpG ODN as an adjuvant 
for immunotherapy against melanoma [123, 124]. 

Mannosylation can help to enhance nanoparticle 
localization in the lymph nodes, facilitating antigen 
presentation by DCs. In an example, mannose was 
selected to decorate chitosan nanoparticles [125]. Due 
to the innate immunostimulatory effect of chitosan, 
the nanoparticles were able to elicit strong immune 
responses without the addition of any other 
immunostimulants. The mannose-modified chitosan 
nanoparticles were loaded with whole tumor cell 
lysate prepared from B16 melanoma cells. Prompt 
uptake by endogenous DCs within the draining 
lymph node was observed, which correlated with an 
elevation in IFNγ and IL4 levels. The therapeutic 
effects of this formulation were remarkable and 

resulted in a significant delay of tumor growth in an 
animal model of melanoma. 

DC targeting can also be achieved using other 
sugar monomers, and galactose modification is 
another example of biomimetic targeting using simple 
sugar ligands. Galactosylation was performed on 
dextran-retinal nanogels for cancer vaccine delivery 
[126]. The formulation exhibited improved cell 
targeting, which translated to significantly improved 
DC maturation. With its inherent adjuvancy, this 
immunostimulatory nanogel platform represented a 
potent delivery system for anticancer vaccination. 
Additionally, more complex carbohydrates have been 
studied for their natural binding interactions with 
immune cells. Among these, glycans have been 
employed as biomimetic targeting moieties. 
Lewis-type (Le) glycan structures can be grafted to 
delivery vehicles for specific binding to DC-specific 
intercellular adhesion molecule-3-grabbing 
nonintegrin (DC-SIGN) expressed on DCs [127]. In 
one example, liposomes were modified with targeting 
glycans LeB or LeX, which result in increased binding 
and internalization by bone marrow-derived DCs 
expressing DC-SIGN [128]. This glycoliposome-based 
vaccine could boost CD4+ and CD8+ T cell responses 
when the melanoma antigen MART1 was 
co-delivered. 

4.3 Natural Carriers 
Leveraging natural constructs for biomolecule 

transportation is another strategy for delivering 
immunostimulatory agents. By deriving nanovehicles 
from biological systems and loading them with 
immunostimulants, these delivery platforms can 
induce potent immune responses by targeting and 
interacting with specific immune cell subtypes. 
Additionally, because many of these carriers are 
either naturally occurring or easily self-assembled, 
their production can be readily streamlined, which 
enhances their translational potential. 

 

Table 1. Biomimetic strategies for the nanodelivery of immunostimulatory agents. 

Strategy Key points Examples 

Biomimetic modifications 
• Direct modification of traditional nanocarriers. 

• Facile and controllable processes. 

Simple sugars[123, 124, 126] 

Glycans[128] 

Natural carriers 

• Adaptation of natural carriers from biological systems. 

• Straightforward collection, derivation, or self-assembly. 

• Natural immune stimulation or targeting properties. 

• High biocompatibility. 

Virus nanoparticles[133, 137, 138] 
Protein nanoparticles[148, 150, 153, 157, 159] 
Oligonucleotides/polypeptides[169-173] 
Lipoproteins[163-165] 
Cell membrane vesicles [176-178, 180, 184] 
Genetically modified vesicles[187, 189, 193, 194] 

Cell membrane hybrids 

• Combination of naturally occurring and synthetic nanomaterials. 

• Natural immune stimulation or targeting properties. 

• Multimodal functionality. 

White blood cell hybrids[200, 202, 203] 
Red blood cell hybrids[208-210] 

Cancer cell hybrids[216, 217, 219-221] 
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4.3.1 Virus Nanoparticles 
Among the naturally occurring nanocarriers, 

virus-like particles (VLPs) have attracted significant 
attention, as they can be readily used to induce 
immune responses. VLPs are protein structures 
isolated from viruses that can inherit viral targeting 
capabilities and lack the presence of potentially 
dangerous genetic material [129]. Viruses can 
inherently activate immune responses through 
repetitive surface structures and pathogen-associated 
molecular patterns, which often carry over to VLPs 
[130]. Identified as exogenous, VLPs can trigger 
potent immunity on their own, which can greatly 
reduce the need for incorporating other 
immunostimulants. Thus, owing to their intrinsic 
targeting and immunogenicity, VLPs can promote 
better antigen delivery, boost immune responses, and 
enhance antigen presentation to the adaptive immune 
system [131].  

A notable example of a VLP platform for 
immunomodulation is one based on the cowpea 
mosaic virus (CPMV), which has been shown to 
interact with APCs [132]. In one such work, VLPs 
made from CPMV (CPMV-VLPs) suppressed 
established metastatic B16F10 melanoma and 
generated potent systemic antitumor immunity 
against the poorly immunogenic cancer cells [133]. 
After intratracheal administration, CPMV-VLPs 
activated neutrophils in the tumor microenvironment 
and coordinated downstream antitumor immune 
responses. In combination with an antigenic peptide 
derived from the human epidermal growth factor 
receptor 2 (HER2) protein, CPMV-VLPs have also 
served as a cancer vaccine for the treatment of HER2+ 
tumors [134]. Upon in vivo  administration, the 
CPMV-VLP platform shows significant lymph node 
accumulation and potently activates APCs [135].  

Rod-shaped plant viruses such as the tobacco 
mosaic virus (TMV) have also been investigated. For 
example, vaccination using antigen-carrying 
TMV-VLPs has demonstrated efficacy against various 
tumor models [136]. TMV-VLPs have been found to 
participate in specific interactions with DCs and 
lymphocytes and can effectively stimulate APC 
activation. VLP systems based on the bacteriophage 
Qβ have demonstrated the ability to promote DC 
maturation and CTL stimulation [137]. CpG ODN was 
loaded into Qβ-VLPs for synergistic immune 
activation, and the resulting formulation was shown 
to potently prime CTL responses and maintain 
memory CTL levels. Additionally, a lentivector has 
been engineered for specific targeting to DCs [138]. 
The platform employed a viral glycoprotein from the 
Sindbis virus, enabling it to avidly bind with the DC 

surface protein DC-SIGN and induce cell maturation. 
Using OVA as a model antigen, the engineered 
lentivector promoted production of a high frequency 
of OVA-specific CD8+ T cells after subcutaneous 
administration in a murine model. VLPs derived from 
other virus sources, such as human papillomavirus 
[139, 140], enterovirus 71 [141, 142], and hepatitis B 
[143, 144], have also been evaluated for cancer 
immunotherapy applications. 

4.3.2 Protein Nanoparticles 
Protein-based nanoparticles can be obtained by 

the self-assembly of protein structures from sources 
other than viruses [145]. These particles exhibit 
highly-ordered surface patterns and geometries, 
which make them competitive delivery platforms for 
cancer immunotherapy applications [146]. 
Nanoparticles assembled from the E2 component of 
pyruvate dehydrogenase have become an emerging 
class of nanocarriers for biomimetic delivery [147]. 
Because of their small size, E2 nanoparticles are 
well-suited for lymphatic transport and DC uptake. 
Systematic work on the utilization of E2 nanoparticles 
as biomimetic carriers for cancer immunotherapy 
have been published. In one work, a virus-mimicking 
DC-targeted vaccine platform was engineered to 
deliver the DC-activating CpG ODN (Figure 5) [148]. 
By co-delivering a peptide epitope from OVA along 
with the adjuvant using the E2 nanoparticle, DC 
maturation and antigen cross-presentation were 
achieved after particle uptake by DCs. Impressively, 
CpG ODN in the E2 formulation could activate DCs at 
a 25-fold lower concentration than free CpG ODN, 
which highlights the high delivery efficiency of this 
approach. Ultimately, the formulation was able to 
increase and prolong antigen-specific CD8+ T cell 
activation. In subsequent works, a variety of TAAs 
have been successfully delivered together with CpG 
ODN using E2 nanoparticles for cancer vaccination 
[149, 150].  

Heat-shock proteins (HSPs) have also been 
explored for use in nanoformulations for cancer 
immunotherapy [151]. Protein nanoparticles derived 
from HSPs can exhibit strong receptor-specific 
interactions with APCs, which facilitates downstream 
antigen presentation and immune stimulation [152]. 
Several in vivo  studies have been conducted on the 
use of HSP nanoparticles for immunization 
applications. For example, antigenic peptides bound 
to HSP96 have been used as cancer vaccines for 
patients with recurrent glioblastoma multiforme and 
colorectal liver metastases [153, 154]. Similarly, 
immunization with natural HSP110 complexed with 
the melanoma-associated antigen gp100 protected 
mice against subsequent challenge with 
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gp100-expressing B16 melanoma by bolstering both 
CD4+ and CD8+ T cell populations [155]. 

Other protein nanoparticles that have been used 
as natural carriers for antigen delivery include ferritin 
and protein vault nanoparticles. Other than their 
applications in drug delivery and imaging, ferritin 
nanoparticles were recently studied for cancer 
immunotherapy [156]. Antigenic peptides derived 
from OVA were introduced to ferritin nanoparticles 
via attachment onto the exterior surface or 
encapsulation inside the interior cavity [157]. 
Immunization with the antigen-loaded ferritin 
nanoparticles could efficiently induce antigen-specific 
CD4+ and CD8+ T cell proliferation in mice. Similarly, 
the inner cavity of vault nanoparticles can be used to 
encapsulate payloads, including immunostimulatory 
agents [158]. For example, they were used to 
efficiently deliver CCL21, a lymphoid chemokine 
predominantly expressed in lymph nodes, in order to 
promote antitumor activity and inhibit lung cancer 
growth in vivo  [159]. Intratumoral administration of 
the CCL21-complexed formulation enhanced 
CCL21-associated leukocytic infiltrates and reduced 
the frequency of immunosuppressive cells. 

4.3.3 Lipoproteins 
Another popular type of biomimetic material 

that can be used for immunotherapeutic applications 

is lipoproteins, which are endogenous nanocarriers 
involved in the metabolic transport of fat molecules, 
as well as biomolecules such proteins, vitamins, 
hormones, and miRNA [160]. Due to their high 
biocompatibility and long lifespan, lipoprotein-based 
nanocarriers have become emerging delivery vehicles 
for exogenous payload transport [161]. Furthermore, 
the size of lipoproteins can be tuned for efficient 
lymph node draining and promotion of adaptive 
immune responses [162]. Synthetic high-density 
lipoprotein (sHDL)-mimicking nanodiscs for 
personalized neoantigen vaccination and cancer 
immunotherapy have recently been reported (Figure 
6) [163]. In the design, cholesterol-modified CpG 
ODN and identified neoantigen peptides were added 
to the sHDL nanodiscs to prepare homogeneous 
ultrasmall cancer nanovaccines. The sHDL nanodiscs 
improved delivery to lymphoid organs and 
stimulated antigen presentation by DCs. Remarkably, 
the nanodiscs elicited a more than 30-fold greater 
frequency of antigen-specific CTLs compared with a 
soluble CpG ODN formulation, validating the 
robustness of using sHDL as an immunostimulant 
delivery platform. When combined with other 
immunotherapies such as anti-PD-L1 or anti-CTLA-4 
mAbs, the sHDL nanodiscs could eradicate 
established MC-38 and B16F10 tumors in vivo . 

 

 
Figure 5. Adjuvant and antigen delivery using protein-based nanoparticles. (A) CpG ODN and a peptide antigen can be encapsulated into E2 protein nanoparticles for use as an 
anticancer vaccine formulation. Upon delivery into immature DCs (iDCs), they can promote transition into a mature phenotype (mDC) and enhance antigen cross-presentation 
to T cells. (B) The CpG-loaded E2 protein nanoparticles enhance dendritic cell maturation. Adapted with permission from [148]. Copyright 2013 American Chemical Society. 
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Figure 6. Adjuvant and antigen delivery using lipoprotein nanoparticles. (A) Synthetic high-density lipoprotein (sHDL) nanodiscs can be inserted with antigens (Ag) and adjuvants 
(CpG) using a cysteine-serine-serine (CSS) linker and cholesterol (Cho), respectively. Upon administration, the nanoparticles can drain into nearby lymph nodes, where they are 
uptaken by DCs that can subsequently activate tumor-specific T cell populations. (B) The dual-loaded nanodisc formulation elicits strong antigen-specific T cell responses and 
greatly inhibits tumor growth. Adapted with permission from [163]. Copyright 2017 Nature Publishing Group. 

 
Furthermore, other TLR agonists such as MPLA 

have been successfully incorporated into 
nanolipoproteins via self-assembly [164]. Compared 
to administration of the agonist alone, its 
immunostimulatory profile could be significantly 
enhanced in the nanoformulation, resulting in 
elevated cytokine levels and upregulation of 
immunoregulatory genes. In another work, MPLA 
and CpG ODN were readily loaded into 
Ni2+-chelating nanodiscs via insertion into loosely 
packed lipid bilayers [165]. His-tagged antigens were 
then loaded into the nanodiscs via binding to Ni2+. It 
is noteworthy that the adjuvant dosages in the 
nanodisc formulations were 10-fold lower than what 
was needed to elicit similar antibody levels and 
immune responses by independent administration of 
the components. Overall, lipoprotein-based 
nanocarriers represent an effective platform for 
antigen and adjuvant co-delivery. Additionally, it has 
been shown that co-delivery of chemotherapeutics 

along with immunostimulatory payloads via these 
platforms can help to further amplify antitumor 
efficacy [166, 167]. 

4.3.4 Oligonucleotides and Polypeptides 
Oligonucleotides can be designed to 

self-assemble into nanoparticles with well-defined 
structures and uniform sizes, and these particles have 
been leveraged for the delivery of 
immunostimulatory agents [168]. In particular, CpG 
ODNs have been attached to structural 
oligonucleotides and assembled into multivalent 
DNA nanostructures [169]. These particles were 
readily taken up by APCs and engaged TLR9 to 
activate proinflammatory immune processes. In 
another approach, flower-like nanostructures were 
self-assembled from long nucleotides integrated with 
tandem CpG ODNs through rolling circle replication 
[170]. These DNA nanoparticles were able to 
efficiently deliver the CpG payload while preventing 
it from nuclease degradation. CpG-containing 
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oligonucleotide nanostructures can also be used for 
the co-delivery of additional payloads. In one of such 
example, a programmable DNA nanocomplex was 
constructed through the self-assembly of a model 
antigen streptavidin and CpG ODN with precise 
control over valency and spatial arrangement [171]. 
The resulting antigen–adjuvant nanocomplex could 
be used to induce long-lasting antigen-specific 
immunity. In another work, anti-PD-1 mAbs were 
loaded into a CpG ODN nanostructure to achieve 
synergistic action while reducing potential side effects 
[172]. Similar to oligonucleotide nanoparticles, those 
based on polypeptides have also been tested for the 
delivery of immunostimulatory payloads. In one 
representative work, CpG ODN was conjugated onto 
polyglutamic acid, and microparticles were obtained 
through infiltration of the conjugates into porous 
silica templates, followed by crosslinking of the 
polypeptide chains and subsequent template removal 
[173]. The formulation was used to successfully 
deliver CpG ODN to primary human DCs.  

4.3.5 Cell Membrane Vesicles 
The last major class of naturally occurring 

delivery vehicles is cell membrane vesicles. Payload 
delivery using cell-derived membrane vesicles 
enables concurrent use of multiple membrane 
biomolecules and biomarkers for functions such as 
immune cell targeting, cytosolic localization, and 
elicitation of cytokine production, among others [115]. 
Exosomes are fragmented vesicles secreted from cells 
and have essential roles in cellular signaling and 
metabolic transport [174]. Depending on their origin, 
they can exhibit natural affinity towards specific 
tissues within the body. In the presence of proper 
immune stimulation, tumor cell-derived exosomes 
containing TAAs can induce strong adaptive 
immunity when delivered to APCs [175]. For instance, 
CpG ODN was incorporated onto exosomes derived 
from modified B16BL6 cells [176]. The CpG 
ODN-carrying exosomes were effective at inducing 
maturation of DCs for enhanced TAA presentation 
and generation of B16BL6-specific CTLs. 
Immunization with the modified exosome vaccine 
resulted in stronger in vivo  immunotherapeutic 
efficacy on B16BL6-challenged mice compared with 
the co-administration of exosomes and CpG ODN. 
Tumor membrane has also been utilized for antigen 
inclusion and adjuvant delivery in a different type of 
approach [177]. In the example, OVA-expressing 
B16F10 melanoma cells were lysed and vesiculated by 
sonication. Lipid-conjugated PEG and 
cholesterol-linked CpG ODN were then loaded onto 
the nanoparticles via lipid insertion. The resulting 
tumor membrane vesicle-based formulation exhibited 

effective lymph node draining and induced the 
generation of OVA-specific CTLs. When combined 
with anti-PD-L1 immunotherapy, the treatment 
mediated complete tumor regression in more than 
half of the animals that were treated and protected all 
survivors against a subsequent tumor cell 
re-challenge. Adjuvant loading can also be achieved 
by incorporation into tumor membrane particles both 
before and after vesiculation. In an example, whole 
B16F10 melanoma cells were broken down into 
membrane-enclosed vesicular compartments by 
extrusion or sonication in the presence of CpG ODN, 
followed by incubation with MPLA [178]. The breadth 
and diversity of the TAA repertoire was maintained 
on these membrane particles. The formulation 
promoted the uptake of the loaded adjuvant payloads 
and potentiated DC activation. When administered in 
vivo, the adjuvant-loaded particles stimulated 
antigen-specific cellular and humoral immune 
responses against B16F10. 

Unlike membrane vesicles from tumor origins, 
those derived from innate immune cells can be 
directly leveraged for downstream immune 
stimulation. For instance, membrane vesicles derived 
from DCs primed with tumor vesicles have been 
shown to activate T cells and promote robust 
antitumor immunity [179]. In another example, 
immature DCs separated from C57BL/6 mice were 
pretreated and stimulated by the TLR4 agonist MPLA, 
which led to the elevated expression of costimulatory 
markers [180]. DC membrane vesicles were then 
obtained after multiple freeze-thaw cycles. A model 
antigenic peptide from OVA was loaded into the 
membrane vesicles, and the resulting formulation was 
shown to activate immature DCs in situ and augment 
the expansion of antigen-specific CD8+ T cells.  

Bacterial outer membrane vesicles (OMVs) have 
also been explored for cancer immunotherapy 
applications. OMVs are lipid vesicles released from 
the outer membrane of Gram-negative bacteria and 
serve a variety of roles during infection [181]. They 
contain a number of natural adjuvants such as LPS, 
flagellin, and peptidoglycan that can be used to 
trigger strong immune reactions [182]. This intrinsic 
immunostimulatory property has been tested in 
different disease applications [183]. The potential of 
Escherichia coli OMVs as an effective anticancer agent 
has been explored, where they were tested against 
four different tumor models (CT26, MC38, B16BL6, 
and 4T1) [184]. Intravenous administration of the 
OMVs led to accumulation in tumor tissue and 
induced cytokine production that enabled the growth 
of established tumors to be controlled.  
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4.3.6 Genetically Modified Membrane Vesicles 
In addition to their ability to encapsulate and 

deliver immunotherapeutic payloads, natural 
membrane vesicles can be genetically modified to 
introduce additional functionalities. IL12 plays an 
important role in the activation of NK cells and CTLs 
[185]. However, the direct administration of IL12 can 
cause severe adverse effects, which undermine its 
benefits in cancer immunotherapy applications [186]. 
In one work, cells were genetically modified to 
express functional IL12 using a glycolipid anchor 
[187]. The anchored IL12 could then be efficiently 
intercalated and transferred onto membrane vesicles 
isolated from various tumor cell lines. It was found 
that the incorporation of IL12 onto the tumor 
membrane vesicles could significantly induce T cell 
proliferation and the release of IFNγ. In a subsequent 
work, together with IL12, glycolipid-anchored HER2 
and CD80 were also transferred to plasma membrane 
vesicles homogenized from tumor tissues [188]. The 
IL12 and CD80 served to enhance immune 
stimulation against the HER2 antigen. Immunization 
with these vesicles induced strong HER2-specific 
immune responses and resulted in complete 
protection against HER2+ tumor challenge. 

In another type of approach, the engineering of 
membrane vesicles to express immunoregulatory 
proteins can be used to achieve a checkpoint blockade 
effect for antitumor therapy. In one work, PD-1 was 
stably expressed on the membrane of HEK 293T cells, 
which were subsequently extruded to form 
nanovesicles [189]. The resulting PD-1-presenting 
membrane vesicles could effectively bind to and 
neutralize the PD-L1 ligand on tumor cells, leading to 
the reactivation of exhausted antigen-specific CD8+ T 
cells. Furthermore, using a similar editing process, 
PD-1 receptors were expressed on megakaryocytes 
before differentiation into platelets [190]. Taking 
advantage of the outstanding tumor targeting ability 
of platelets, the platelet-derived PD-1-containing 
membrane vesicles could be retained at the tumor site 
post-resection to enhance the activity of CD8+ T cells 
against residual disease. 

Other protein ligands can be integrated into 
membrane vesicles using similar genetic modification 
approaches. A virus-mimetic nanovesicle was 
produced by expressing viral proteins in mammalian 
cells, which were then sonicated in the presence of 
surfactants [191]. This approach enabled the display 
of functional polypeptides with correct conformations 
and could aid in future vaccine design. In a different 
type of example, a hepatitis B virus receptor was 
engineered into nanovesicles in order to generate 
nanoscale decoys that could block infection by the 
virus in vivo  [192]. Besides viral proteins, 

tumor-targeting moieties, such as human epidermal 
growth factor or anti-HER2 affibodies, have been 
successfully integrated onto nanovesicles [193]. The 
engineered liposome-like nanovesicles could be used 
to enhance the delivery of phototheranostic or 
chemotherapeutic agents to tumor cells. 

In terms of bacterial vesicles, OMVs can also be 
easily modified to introduce additional functional 
components. As an example, E. coli OMVs were 
genetically decorated with two epitopes present in 
B16F10 melanoma cells expressing epidermal growth 
factor receptor variant III, and the resulting 
formulation was tested for its protective activity 
against tumor growth [194]. High levels of 
antigen-specific antibody titers were elicited, and 
significant amounts of tumor-infiltrating lymphocytes 
were found at the tumor site. This ultimately led to 
effective protection of the immunized mice upon 
tumor challenge. 

4.4 Engineered Cell Membrane Hybrids 
For payload delivery, naturally occurring 

membrane can be integrated with other synthetic 
materials in a manner that takes advantage of the 
distinct strengths of each component. Specifically, for 
the delivery of immunostimulants, the presence of cell 
membrane-derived functionality can facilitate 
targeting to immune cells and accumulation in 
immune-rich organs, while other components can be 
included to augment immune stimulation 
performance. The membrane component can be 
further engineered to confer exogenous functional 
moieties, including cytokines, receptor-binding 
ligands, targeting antibodies, and immunogenic 
antigens, among others [195]. Compared with 
traditional nanoformulations, a major advantage of 
these hybrid platforms is the ability of the natural 
component to camouflage artificial materials that 
would normally be cleared quickly by the immune 
system [196]. These approaches also enable 
sophisticated delivery strategies where different 
payload combinations can be employed in unique 
ways [197]. Additionally, in these hybrid systems, the 
intrinsic properties of various synthetic nanomaterials 
can be readily leveraged to achieve multimodal 
functionality or to create combinatorial treatments 
[115]. 

4.4.1 White Blood Cell Membrane Hybrids 
Mimicking the function of immune cells can be 

an effective means for achieving targeted delivery of 
immunostimulatory agents for cancer therapy. The 
transfer of bioactive cellular components to synthetic 
particles is one of the strategies that can bestow the 
biological functions of immune cells to synthetic 
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hybrids [198]. A bottom-up approach has been 
proposed based on the extraction of plasma 
membrane proteins from macrophages and 
subsequent incorporation of these proteins with 
synthetic choline-based phospholipids [199]. The 
assembled hybrid vesicles retained the targeting 
capability of macrophages and were used for 
preferential targeting to inflamed vasculature. 
Similarly, porous silicon particles have been cloaked 
using membrane derived from leukocytes [200]. The 
resulting hybrid particles possessed immunological 
functionalities similar to the source cells, including 
protection from opsonization, reduced phagocytic 
uptake, and binding to tumor endothelium. It has 
been shown that the source of membrane is critical for 
improving systemic tolerance and minimizing 
inflammatory responses [201]. Membrane hybrid 
particles derived from syngeneic membrane exhibited 
less uptake by the murine immune system compared 
with those fabricated from xenogeneic membrane, 
possibly due to the presence of critical biomarkers and 
self-recognition receptors preserved after cloaking.  

A recent work described the coating of leukocyte 
membrane onto magnetic nanoclusters for the 
construction of artificial APCs [202]. Specifically, a 
macrophage cell line was pre-modified with azide 
before membrane extraction and uniformly coated 
onto the nanocluster cores. The nanohybrids were 
then functionalized with an MHC complex and 
anti-CD28 for antigen presentation to CD8+ T cells. 
The resulting artificial APCs could not only stimulate 
the expansion of antigen-specific CTLs, but also 
helped to effectively guide reinfused CTLs to tumor 
tissues through magnetic control. Immunotherapeutic 
nanoformulations cloaked by membrane from 
another leukocyte cell type, NK cells, have also been 
reported [203]. NK cells were selected because of their 
immunoregulatory roles. By coating polymeric 
nanoparticles with NK cell membrane, the resulting 
particles were able to induce M1 macrophage 
polarization and elicit tumor-specific immune 
responses. A photosensitizer was loaded into the 
polymeric cores for photodynamic therapy, which 
helped to improve immunotherapeutic efficacy of the 
system by inducing expression of damage-associated 
molecular patterns on dying tumor cells.  

4.4.2 Red Blood Cell Membrane Hybrids 
Owing to their high blood abundancy, facile 

processing, and remarkable biocompatibility, red 
blood cells (RBCs) have used extensively as a source 
of membrane coating material to construct versatile 
platforms for nanodelivery applications [204, 205]. 
The resulting membrane-coated nanoparticles can 
protect encapsulated payloads from immune 

clearance and facilitate enhanced delivery. As recently 
discovered, RBCs can help to mediate certain immune 
processes [206, 207], which may eventually be 
leveraged for immunotherapeutic applications. Their 
ability to interact with certain pathological immune 
cell subsets has also aided in the design of targeted 
membrane-coated nanoformulations [208]. In the 
work, a subpopulation of B cells was positively 
labelled by RBC membrane-coated nanoparticles 
based on cognate receptor binding. Additionally, an 
active particulate vaccine system based on RBC 
membrane-coated micromotors has recently been 
reported [209]. Antigen-inserted RBC membrane was 
integrated with core–shell micromotors that provided 
propulsion properties for enhanced oral vaccination. 
The RBC membrane-coated vaccine formulation 
demonstrated improved retention in the mucosal 
layer of the small intestine, which led to more robust 
antibody production.  

Specifically in terms of cancer applications, an 
RBC membrane-based nanovaccine platform for the 
stimulation of antitumor immunity was recently 
reported [210]. The platform was constructed by 
enveloping RBC membrane around a polymeric 
PLGA core, which was used to load MPLA adjuvant 
and an antigenic peptide. Additionally, mannose was 
inserted into the RBC membrane for active APC 
targeting. Enhanced retention in the draining lymph 
nodes after intradermal injection was observed, along 
with elevated IFNγ secretion and CD8+ T cell 
responses. This nanovaccine effectively inhibited 
tumor growth and suppressed tumor metastasis in a 
murine B16F10 melanoma model.  

4.4.3 Cancer Cell Membrane Hybrids 
Cancer cell membrane represents a rich source of 

functional ligands as well as TAAs [115, 116], and 
these properties have been leveraged in the design of 
hybrid nanostructures for cancer imaging [211], 
photothermal therapy [212], photodynamic therapy 
[213], virotherapy [214], and immunotherapy [215]. In 
one such work on cancer immunotherapy, the 
immunogenic properties of HSP70 was leveraged to 
enhance immune responses against cancer cell 
membrane antigens [216]. The protein was 
incorporated into a membrane structure along with 
TAAs from B16-OVA cell membrane, which was 
subsequently coated around a phosphate calcium core 
encapsulating CpG ODN. The platform effectively 
delivered the antigen and adjuvant payloads to APCs 
and NK cells, which led to the expansion of 
IFNγ-expressing CD8+ T cells and NKG2D+ NK cells. 
In another approach, the membrane from 
MDA-MB-231 breast cancer cells was coated around 
thermally oxidized porous silica, which was used as a 
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novel immunostimulatory agent [217]. The resulting 
hybrid nanoparticles greatly enhanced IFNγ secretion 
by peripheral blood monocytes and oriented the 
polarization of T cells towards a Th1 phenotype. 

Without the assistance of immunostimulatory 
agents, the immunogenicity of TAAs is generally 
insufficient to elicit potent antitumor responses [218]. 
In addition to the above examples, there are many 
other strategies by which adjuvants can be included in 
cancer cell membrane-based nanoformulations. In an 
example, cell membrane from B16F10 melanoma 
coated onto PLGA nanoparticles was incorporated 
with the adjuvant MPLA [219]. Besides its ability to 
homotypically target the source cancer cells, this cell 
membrane hybrid platform could efficiently induce 
the maturation of professional APCs and improved 
downstream T cell stimulation. In a follow-up study, 
CpG ODN loaded into PLGA cores was used to 
generate another anticancer vaccine formulation 
(Figure 7) [220]. The nanoparticulate delivery of the 
adjuvant significantly enhanced its biological activity 

compared with CpG ODN in free form. Upon uptake 
by DCs, the nanovaccine formulation promoted the 
generation of multiple CTL populations with tumor 
specificity. When combined with other 
immunotherapies such as checkpoint blockades, the 
nanoformulation demonstrated the ability to 
significantly enhance control of tumor growth in a 
therapeutic setting. Over time, increasingly 
sophisticated nanovaccine formulations have been 
developed using the membrane coating concept. In a 
recent design, PLGA nanoparticles were loaded with 
the TLR7 agonist R837 and then coated with 
membrane from B16-OVA cancer cells (Figure 8) 
[221]. To provide APC targeting functionality, the 
membrane shell was further modified with a mannose 
moiety using a lipid anchoring approach. The hybrid 
nanoformulation not only exhibited efficacy in 
delaying tumor growth as a preventative vaccine, but 
also displayed activity against established tumors 
when co-administered with anti-PD-1 mAbs. 

 

 
Figure 7. Anticancer vaccination using cancer cell membrane-coated nanoparticles (CCNPs). (A) The membrane derived from cancer cells, along with its associated tumor 
antigens, is coated onto CpG ODN-loaded nanoparticle cores to yield a nanoparticulate anticancer vaccine (CpG-CCNPs). Upon delivery to APCs, the vaccine formulation 
enables activation of T cells with multiple antitumor specificities. (B) The co-delivery of both tumor antigens and CpG together in CpG-CCNPs greatly protects against tumor 
growth and enhances survival. Adapted with permission from [220]. Copyright 2017 Wiley-VCH. 
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Figure 8. Anticancer vaccination using targeted CCNPs. (A) Tumor cell membrane-coated, R837-loaded, and mannose-modified PLGA nanoparticles (NP-R@M-M) can 
promote transition of DCs from an immature (iDC) to mature (mDC) phenotype. (B) When combined with checkpoint blockade therapy, tumor growth can be effectively 
inhibited, and survival is enhanced. Adapted with permission from [221]. Copyright 2018 American Chemical Society. 

 

5. Conclusions and Perspectives 
In this review, we have discussed current 

progress in the development of nanoscale platforms 
for the delivery of immunostimulatory agents. 
Adjuvants, cytokines, and mAbs all represent 
immunotherapeutic agents that can benefit from the 
enhanced transport afforded by nanodelivery. The 
formulation of these compounds into particulate 
nanocarriers protects their biological activity and 
elevates their bioavailability, both of which can 
contribute to stronger immune stimulation. To 
address the need for specific delivery to target 
immune cell subsets and immune-rich tissues, 
bioinspired platforms and modifications can provide 
certain advantages over current nanoparticle 
technologies. Biomimetic delivery approaches 

generally enable facile immune cell targeting, and the 
inherent immunogenicity or antigenicity associated 
with many of these platforms can be directly 
leveraged for more efficient vaccine design. 
Furthermore, by integrating immunostimulants with 
tumor antigens in the same particulate system, 
significant immunotherapeutic efficacy against 
established tumors can be achieved. 

Although the emerging biomimetic approaches 
discussed in this review have shown significant 
potential for cancer immunotherapy, there are still 
several areas in which improvements can be made. 
For one, further enhancement of immunostimulatory 
potency in a safe manner is highly desirable. This can 
be achieved by improving targeting efficacy or 
developing new materials with better 
immunostimulatory characteristics. As tumor 
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immunosuppression occurs by a variety of different 
mechanisms, it is likely that a large percentage of 
patients will not respond to mono-immunotherapies. 
Therefore, effort will need to be placed on the 
exploration of how to best combine different 
immunotherapeutic modalities to maximize 
antitumor responses. For example, agents that affect 
innate and adaptive immunity can be combined 
together to provide comprehensive immune 
activation. Otherwise, immunotherapies can also be 
combined with other therapeutic modalities, 
including surgery, radiation, chemotherapy, and 
targeted therapy, among many others. Finally, as 
biomimetic technologies mature, more work will need 
to be done in order to facilitate clinical translation. 
Challenges along these lines include the cost-effective 
sourcing of biological nanomaterials, large-scale 
production of pharmaceutical grade products, and 
optimization of long-term storage conditions. As 
many of these promising new platforms exist at the 
interface between natural and synthetic, this is a new 
frontier that will need to be explored in concert with 
regulatory agencies. 
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