Supplementary Material

Legends

Table S1. IHC characterization of the HER2+ BC subtype. Expression of estrogen receptor (ER), progesterone receptors (Pr), Ki-67 and C-erbB-2 in breast cancer tumor tissues.

Table S2

Sequences of the primers for RT-PCR miRNA amplification (in white) or miRNA modulation (in gray).

Table S3 *miR-429, miR-190 and miR-584* putative targets in HER2+ BC samples. For each miRNA (1st column) we indicated the pairwise pathways (2nd column), the number (3rd column) and the name of the target genes (4-5th column) within these pathways.

Figure S1 *miRNA-429* is upregulated, while *miR-190* and *miR-584* are downregulated in HER2+ BC cell lines. The expression levels of *miR-429* (A), *miR-190-5p* (B) and *miR-584* (C) were evaluated in SKBR3 HER2+ cell line compared to MCF10A 'normal-like' cell line, by RT-PCR analysis. The results are the average of three independent experiments in triplicate (t test, p value <0.05, *; <0.01, **, <0.001, ***).

Figure S2 RT-PCR analysis revealed that miR-429 is specific for HER2+ BC. RT-PCR analysis of *miR-429* expression level in Luminal A, Luminal B and HER2+ BC compared to normal-like cell lines. The results are the average of three independent experiments in triplicate. T test, p value<0.05,*; <0.01, **; <0.001, ***.

Figure S3. miR-429 is significantly overexpressed in each of the 3 considered stages compared to normal samples (t test p value<0.001, ***) (3A). Each stage composition is variable, containing either Luminal A Luminal B, Her2+ and basal. We observed that miR-429 expression is not associated with different stages of BC.

Figure S4 *miRNA-429* controls HER2+ BC cell proliferation migration and invasion.

In order to verify if miR-429 is involve in cell proliferation, the SKBR-3 cells were treated with 200nM of As *miR-429*. The expression level of *miR-429* was evaluated by RT-PCR analysis (t test compared to scramble treated cells, p value <0.01, **; <0.001, ***) (A). Wound healing test was performed on SKBR-3 treated with 200nM scramble oligonucleotide or As *miR-429* in culture for 9 days. In each sample, the wound area was quantified by Image J analysis and normalized on the same area at time 0 [31] (t test compared to scramble-treated cells; n=3 experiments in triplicate, p value <0.01, **) (B).

Cell count was performed on HER2+ MDA-MB-453 cell line at 0, 24, 48, 72, 96 hours of 200nM scramble or As *miR-429* oligonucleotide treatment. The results are the average of three independent experiments in triplicate (t test performed on scramble treated cells, p value<0.05, *)(C).

Figure S5 As *miR-429* is counteracts the growth of HER2+ BC tumors xenografted in mouse.

Schematic representation of tumor injection and As *miR-429* treatment workflow (A). The pictures represent the tumors, treated with As *miR-429* (on the left) or with scramble oligonucleotides (on the right) after explaning from the mouse (n=5 tumors from SKBR3 cells, T test, p value<0.05, *; p value <0.01, **) (B).

Figure S6 Analysis of the mRNA sequence of human VHL revealed a seed for *miR-429* pairing in the 3' UTR of the target.

Figure S7 RT-PCR analysis on tumors formed by scramble- or As *miR-429* treated SKBR3 cells, explanted from mouse. The tumors, in which we succeeded in *miR-429* reduction (A), have a higher VHL expression (B), reduction in HIF1 α -target SLUG (C), VEGF (D) and SNAIL (E) expression in respect to Scramble-treated tumors. T test, p value <0.05, *; < 0.01, **.

Table S1.

#sample	% ER	% Pr	%Ki67	C-erbB-2
1	0	0	30	2+
2	0	0	15	3+
3	0	0	15	3+
4	0	0	15	3+
5	0	0	30	3+
6	0	0	15	3+
7	0	0	30	3+
8	0	0	15	3+
9	0	0	20	3+
10	0	0	15	3+
11	0	0	20	3+

Table S2

Sequences of the primers for RT-PCR miRNA amplification (in white) or miRNA modulation (in gray)

miRNA ID	Sequence (5'-3')
<i>miR-429</i> (MIMAT0001536)	TCTAATACTGTCTGGTAAAACCGT
<i>miR-190a-5p (</i> MIMAT0000458)	GTGTGATATGTTTGATATATTAGGTTGTT
miR-584-5p (MIMAT0003249)	TTATGGTTTGCCTGGGACTGAG
miR-103-3p	AGCAGCATTGTACAGGGCTATGA
Scramble Sense (S)	ATGATGTCCTTCTAGTACGCATC
<i>miR-429</i> AntiSense (As)	ACGGTTTTACCAGACAGTATTA

miRNA	Pairwise pathways	n. of genes/tot genes	Genes in pathway A	Genes in pathway B
Hsa-miR-429	A) Acute phase response signaling; B) HIF1 signaling	33/484	CP, IL18, MAP2K7, NRAS, SERPINA1, SERPING1	ATM, CREBBP, NRAS, PIK3C3, VEGFB
	A) HIF1 signaling B) Glioblastoma multiforme signaling		ATM, CREBBP, NRAS, PIK3C3, VEGFB	ATM, CDK2, E2F5, NRAS, PIK3C3, RHOC
	A) HIF1 signaling B) Growth hormone signaling		ATM, CREBBP, NRAS, PIK3C3, VEGFB	ATM, PIK3C3, PRKCB, RPS6KA2, SOCS6
Hsa-miR-190	A) Axonal guidance signaling B) CXCR4 Signaling	30/693	ADAM8, BMP1, FZD9, GNB2L1, HRAS, NGEF, PIK3C3, PIK3CB, ROCK1, SEMA3E	GNB2L1,HRAS, PIK3C3, PIK3CB, ROCK1
A) Axonal guidance signaling B) P2Y Purinergic Receptor signaling pathway			ADAM8, BMP1, FZD9, GNB2L1, HRAS, NGEF, PIK3C3, PIK3CB, ROCK1, SEMA3E	GNB2L1, HRAS, NFKB1, PIK3C37, PIK3CB
	A) HIF1 signaling B) Glioblastoma multiforme signaling		COPS5, CREBBP, MMP15, MMP24, NOS3, NRAS, PIK3CA	FOXO1, FZD8, NRAS, PDGFRB, PIK3CA, PLCL1, RHOH, RHOQ
Hsa-miR-584	A) Axonal guidance signaling B) CXCR4 Signaling		ARHGEF12, ARPC3, ARHGEF15, ATM, FARP2, GNAI1, GNB2, MAP2K1, NRAS, PLCB2, PLCD3, PXN, TUBA4A, UNC5B, WAS, WIPF1, WNT10A	ATM, GNAI2, GNB2, MAP2K1, MAPK12, NRAS, PLCB2, PXN
	A) Axonal guidance signaling B) P2Y Purinergic Receptor signaling pathway		ARHGEF12, ARPC3, ARHGEF15, ATM, FARP2, GNAI1, GNB2, MAP2K1, NRAS, PLCB2, PLCD3, PXN, TUBA4A, UNC5B, WAS, WIPF1, WNT10A	ATM, GNAI2, GNB2, MAP2K1, NRAS, PLCB2, PLCD3

Figure S1 *miRNA-429* is upregulated, while *miR-190* and *miR-584* are downregulated in HER2+ BC cell lines.

The expression levels of *miR-429* (A), *miR-190-5p* (B) and *miR-584* (C) were evaluated in SKBR3 HER2+ cell line compared to MCF10A 'normal-like' cell line, by RT-PCR analysis. The results are the average of three independent experiments in triplicate (t test, p value <0.05, *; <0.01, **, <0.001, ***).

Figure S2 RT-PCR analysis revealed that miR-429 is specific for HER2+ BC. RT-PCR analysis of miR-429 expression level in Luminal A, Luminal B and HER2+ BC compared to normal-like cell lines. The results are the average of three independent experiments in triplicate. T test, p value<0.05,*; <0.01, **; <0.001, ***.

LumA: 247 total LumB: 115 total Her2+: 41 total Basal: 83 total

Figure S3: *miR*-429 is significantly overexpressed in each of the 3 considered stages compared to normal samples (t test p value<0.001, ***) (3A). Each stage composition is variable, containing either Luminal A Luminal B, Her2+ and basal. We observed that *miR*-429 expression is not associated with different stages of BC.

Figure S4 miRNA-429 controls HER2+ BC cell proliferation blocking G1/S transition.

The SKBR-3 cells were treated with 200nM of As *miR-429*. The expression level of *miR-429* was evaluated by RT-PCR analysis (t test compared to scramble treated cells, p value <0.01, **; <0.001, ***) (A).

Wound healing test was performed on SKBR-3 treated with 200nM scramble oligonucleotide or As *miR-429* in culture for 9 days. In each sample, the wound area was quantified by Image J analysis and normalized on the same area at time 0 (t test compared to scramble-treated cells; n=3 experiments in triplicate, p value <0.01, **) (B).

Cell count was performed on HER2+ MDA-MB-453 cell line at 0, 24, 48, 72, 96 hours of 200nM scramble or As miR-420 oligonucleotide treatment. The results are the average of three independent experiments in triplicate(t test performed on scramble treated cells, p value<0.05, *)(C).

Figure S5

(A) Schematic representation of tumor injection and As miR-429 treatment workflow

(B) The pictures represent the tumors, treated with As miR-429 (on the left) or with scramble oligonucleotides (on the

right) after explanting from the mouse (n=5 tumors from SKBR3 cells, T test, p value<0.05, *; p value <0.01, **).

Figure S6 VHL is the direct target of *miR-429*.

Sequence analysis of the 3' UTR of human VHL revealed a seed for miR-429 (TargetScan prediction)(A).

VHL 3'UTR 822-828

Hsa-miR-429 (MIMAT0001536)

Figure S7.

RT-PCR analysis on tumors formed by scramble- or As miR-429 treated SKBR3 cells, explanted from mouse. The tumors, in which we succeeded in *miR-429* reduction (A), have a higher VHL expression (B), reduction in HIF1 α -target SLUG (C), VEGF (D) and SNAIL (E) expression in respect to Scramble-treated tumors. T test, p value <0.05, *; < 0.01, **.

