1 2	Inhibition of Protein arginine methyltransferase 6 reduces reactive oxygen species production and attenuates aminoglycoside- and cisplatin-induced hair cell death
3	Yingzi He ^{1#} , Wen Li ^{1#} , Zhiwei Zheng ^{2#} , Liping Zhao ¹ , Wenyan Li ¹ , Yunfeng Wang ¹ *, Huawei Li ^{1,3,4,5*}
4 5 6	¹ Department of ENT institute and Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology, NHC Key Laboratory of Hearing Medicine Research, Fudan University, Shanghai, 200032, PR China
7 8	² Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, School of Medicine, Xiamen University, Xiamen, 361003, China
9 10	³ Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China ⁴ Shanghai Engineering Research Centre of Cochlear Implant, Shanghai, 200031, PR China
10 11 12 13	⁵ The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
14	[#] Yingzi He, Wen Li and Zhiwei Zheng contributed equally to this work.
15	Title of running head: Inhibition of PRMT6 protects HC
16	
17	*To whom correspondence should be addressed:
18	Yunfeng Wang, Ph.D
19	ENT institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan University
20	83 Fenyang Road, Shanghai, 200031, China
21	E-mail: yunfengwang@fudan.edu.cn
22 23	Tel: +86-21-64379980; fax: +86-21-64379980
24	Huawei Li, MD, PhD
25 26	ENT institute and Otorhinolaryngology Department of Affiliated Eye and ENT Hospital, Fudan University 83 Fenyang Road, Shanghai, 200031, China
27	E-mail: hwli@shmu.edu.cn
28	Tel: +86-21-64377134 669; fax: +86-21-64377151
29	
30	
31	
32	
33	
34	
35	
36	
37	
38 20	
39 40	
40	

41 Supplemental figures and figure legends

42 43

43 Supplemental Figure 1. Neomycin (Neo) ototoxicity in cochlear explants maintained *in vitro*. (A)
44 Representative immunofluorescence image of HCs labeled with myosin 7a (red) in the cochlear explant. (B-

- 45 G) Representative immunofluorescence images of HCs labeled with myosin 7a (red) in the cochlear explants
- 46 treated with 0.5 and 1 mM neomycin for 3 h, 6 h and 12. Scale bar = $10 \,\mu\text{m}$. (H) Hair cells positive for
- 47 myosin 7a fluorescence were counted every 200 µm along the apical, middle, and basal regions of the
- 48 cochlear explants from different groups. Data are presented as the mean \pm s.d. one-way ANOVA. *p < 0.05, 49 **p < 0.01, ****p < 0.001 versus the undamaged group, n = 6 cochlear explants per group. Neo: neomycin;
- 50 HCs: hair cells.
- 51

52

53 Supplemental Figure 2. Effects of EPZ020411 on hair cell protection against neomycin ototoxicity in

54 cochlear explants maintained in vitro. (A) Diagram of neomycin and EPZ020411 administration. (B-I) 55 Representative immunofluorescence images of the middle turns of cochlear explants staining for myosin 7a 56 (green). They were either treated with neomycin alone (Neo), neomycin with EPZ020411 ($20 \,\mu$ M, $40 \,\mu$ M) 57pre-treatment (EPZ 20 µM-Neo, EPZ 40 µM-Neo), neomycin and EPZ020411 co-treatment (EPZ 20 µM & 58 Neo, EPZ 40 µM & Neo), or neomycin with EPZ020411 post treatment (Neo-EPZ 20 µM, Neo-EPZ 40 µM). 59 Scale bars = 10 um. (J) Quantification of the numbers of myosin 7a-positive cells in middle turns from each group. Data are presented as the mean \pm s.d. **p < 0.01, ***p < 0.001, ***p < 0.0001 versus the neomycin 60 61 (Neo) group, n = 6 cochlear explants per group. Neo: neomycin alone; EPZ 20 uM-Neo: neomycin with 20 62 µM EPZ020411 pre-treatment; EPZ 40 µM-Neo: neomycin with 40 µM EPZ020411 pre-treatment; EPZ 20 63 μM & Neo: neomycin and 20 μM EPZ020411 co-treatment; EPZ 40 μM & Neo: neomycin and 40 μM 64 EPZ020411 co-treatment; Neo-EPZ 20 μM: neomycin with 20 μM EPZ020411 post treatment; Neo-EPZ 40 65 μM: neomycin with 40 μM EPZ020411 post treatment.

66

67

68 **Supplemental Figure 3. Cisplatin (Cis) ototoxicity in cochlear explants maintained** *in vitro*. (A-C) 69 Representative immunofluorescence images of HCs labeled with myosin 7a (red) in the cochlear explants 70 treated with 20 μ M cisplatin for 12 h, 24 h and 48 h. (D) Quantification of the numbers of myosin 7a-71 positive cells from each group. Scale bars = 10 μ m. The data are presented as the mean \pm s.d. one-way 72 ANOVA. ****p < 0.0001, n = 8 cochlear explants per group. Cis: cisplatin; HCs: hair cells.

73

74

Supplemental Figure 4. Effects of furosemide on hair cells *in vivo*. (A) Representative images of hair cells labeled with myosin 7a (red) + phalloidin (green) in the apical, middle and basal turns of the cochleae from mice received furosemide alone (no neomycin) combined with EPZ020411 (Furo + EPZ) or sterile saline (Furo). Scale bars = 20 μm. (B) Quantification of the numbers of myosin 7a-positive cells. The data

- are presented as the mean \pm s.d. n = 8 cochlear explants per group.
- 80

82 Supplemental Figure 5. In vivo time responses of cisplatin in adult mice. (A) Experimental design. (B-D) Comparison of ABR threshold shifts after D2, D4, and D7 for sterile saline and EPZ020411 treatment 83 84 with cisplatin damage. The data are expressed as the mean \pm s.d. $p^{\#} < 0.05$, $p^{\#} < 0.01$, $p^{\#} < 0.001$ versus 85 the control group; *p < 0.05, **p < 0.01, ***p < 0.001 versus the EPZ-Cis group, n = 6 cochlear explants 86 per group. (E) Representative images of hair cells labeled with phalloidin (red) and Caspase 3/7 (green) in 87 the apical, middle and basal turns of different groups. Scale bars = $20 \,\mu\text{m}$. (F) Quantification of the numbers 88 of hair cells. The data are presented as the mean \pm s.d. *p < 0.05, ***p < 0.001, ****p < 0.0001, n = 6 89 cochlear explants per group. Cis: cisplatin; EPZ-Cis: EPZ020411 plus cisplatin; i.p.: intraperitoneal. 90

92 Supplemental Figure 6. Downregulation of PRMT6 by transfection with PRMT6-siRNA. (A) The 93 mRNA levels of PRMT6 in siRNAs transfected HEI-OC1 cells were detected by Q-PCR. Values were 94 normalized relative to the β -actin mRNA levels. Data are expressed as the mean \pm s.e.m., **p < 0.01, ***p95 < 0.001, ****p < 0.0001. (B) Immunoblot analyses of PRMT6 expression in HEI-OC1 cells. (C) Semi-96 quantitative densitometric analyses of PRMT6 was performed using Image J. The protein content was 97 normalized against the corresponding GAPDH level. Data are expressed as the mean \pm s.e.m.. **p < 0.01, 98 ***p < 0.001. ****p < 0.0001. (D) Immunofluorescence staining with PRMT6 (green) and parvalbumin 99 (red) antibodies in cells transfected without or with negative-siRNA and PRMT6-siRNA-03. Scale bar = 100 10 µm. (E) Representative images of Caspase 3/7 staining in the control, PRMT6-siRNA-03 only, cisplatin 101 only, negative-siRNA and PRMT6-siRNA-03 groups after cisplatin exposure. Scale bars = $10 \,\mu m$. (F) 102 Quantification of Caspase 3/7-positive cells in five different groups. Data are shown as the mean \pm s.e.m. 103 *****p* < 0.0001.