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Supplementary tables 

Table S1. The size, PDI and zeta potential of DBC NPs and Tf-DBC NPs (n=3). 

Nanodrug Size (nm) PDI Zeta potential (mV) 

DBC NPs 118.4±3.4 0.224±0.02 -22.3±0.18 

Tf-DBC NPs 127.2±5.8 0.218±0.02 -27.1±0.16 

 

 

Table S2. Comparing the loading capacity and encapsulation efficiency of single and complete for-

mation in Tf-DBC NPs (n=3). 

Compounds DHA BSO CellROX 

 Tf-D NPs Tf-DBC NPs Tf-B NPs Tf-DBC NPs Tf-C NPs Tf-DBC NPs 

Loading capacity 21.7%±2.1% 17.9%±2.3% 5.4%±1.3% 4.1%±0.9% 18.7%±3.6% 15.6%±1.1% 

Encapsulation 

efficiency 
88.9%±4.9% 76.4%±3.1% 45.5%±2.8% 33.3%±1.4% 80.3%±6.8% 71.4%±3.5% 
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Figure S8. The pixel intensity of FITC calculated in HepG2 and L-02 cells with different incubation 

times. Data are means ± SD (n = 3). 

 

 

Figure S9. Confocal fluorescence images of HepG2 cells incubated with Tf-DBC NPs for different 

times. Scale bars: 10 μm. 
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Figure S10. (A) Flow cytometric assay and (B) cell viability assay of HepG2 cells treated with Tf-DBC 

NPs, Apo-Tf-DBC NPs, and Tf-DBC NPs in the presence of deferiprone (DEF) as a scavenger of Fe(II). 

 

 

Figure S11. Cell viability assay of HepG2 cells treated with free DHA, free BSO, free DHA and BSO, 

Tf-DBC NPs and Apo Tf-DBC NPs. 
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Figure S12. Comparison of content of iron ion measured by an iron colorimetric assay kit before/after 

L-02 and HepG2 cells were treated with different nanoparticles. Data are means ± SD (n = 3). 

 

 

Figure S13. The GSH contents in HepG2 cells for different treated groups including control group, free 

BSO group, Tf-B NPs group, and Tf-DBC NPs group. Data are means ± SD (n = 3). *P< 0.05, **P< 

0.01, ***P< 0.001. 
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Figure S14. Confocal fluorescence images of HepG2 cells stained with LIVE/DEAD after incubated 

with Tf-C NPs, Tf-BC NPs, Tf-DC NPs and Tf-DBC NPs, respectively. Scale bars: 10 μm. 

 

 

Figure S15. The pixel intensity of CellROX and LIVE/DEAD calculated in HepG2 cells after incubated 

with Tf-C NPs, Tf-BC NPs, Tf-DC NPs and Tf-DBC NPs, respectively. Data are means ± SD (n = 3). 
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Figure S16. Lysosomal stability observed with confocal fluorescence images of AO-stained HepG2 

cells after different treatments. Scale bars: 10 μm. 

 

 

Figure S17. (A) The TfR expressions of different cells were tested by western blot using GAPDA as the 

loading control. (B) The semiquantitative analysis of TfR in different cells (n=3). 
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Figure S18. (A) Confocal fluorescence images of Tf-DBC NPs incubated HepG2, L-02, H9c2, HK-2, 

and HUVEC cells, respectively. (B) MTT assays for HepG2, L-02, H9c2, HK-2 and HUVEC cells incu-

bated with Tf-DBC NPs(n=6). 

 

Figure S19. Blood circulation profile of Tf-Cy7 NPs (n=6). 

 

 

Figure S20. Time-dependent in vivo fluorescence images of subcutaneous HepG2 tumor-bearing mice 

after i.v. injection of Tf-Cy7 NPs. 
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Figure S21. The ex vivo fluorescence images of tumor and other major organs collected after the mice 

were killed at 12 h post injection of Tf-Cy7 NPs. 

 

 

Figure S22. The ex vivo fluorescence images of tumor and other major organs collected after the mice 

were killed at 12 h post injection of Tf-DBC NPs. 
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Figure S23. Semiquantitative biodistribution of Tf-DBC NPs in different organs and tumor in HepG2-

tumor bearing mice (n=6). 

 

 
Figure S24. The normalized fluorescence intensity of intratumoral ROS after various treatments. Data 

are means ± SD (n = 6). *P< 0.05, **P< 0.01, ***P< 0.001. 

 

 
Figure S25. The body weight of mice after various treatments (n=6). 
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Figure S26. Representative H&E-stained histological sections of major organs after treatment with Tf-

DBC NPs for in vivo toxicity assay. 


