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Figure S1. Metabolomic analysis of one carbon metabolism in HCC cells. A. Score scatter plot
and B. Loading scatter plot of the OPLS-DA model of Huh-7 control (CTL) versus macroH2A1 KD
cells. C. Significantly altered metabolites in Huh-7 KD compared to Huh-7 control CTL cells. FAD
(Flavin adenine dinucleotide), NAD (nicotinamide adenine dinucleotide), NADP (NAD
phosphate), NADPH (NADP reduced). D. Boxplots of nucleosides and nucleotides (Ns & Nt),
redox electron carriers (Redox), and the ratio Fructose-6-phosphate/Glucose-6-phosphate in

Huh-7 KD versus Huh-7 CTL cells.
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Figure S2. Changes in glycolysis and the pentose phosphate pathway (PPP) in Huh-7

macroH2A1 knockdown (KD) compared to control (CTL) cells. Red arrows indicate

significant increases (P < 0.05), green arrows indicate significant decreases (P < 0.05), and

white arrows indicate non-significant changes (P > 0.05).
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Figure S3. HepG2 macroH2A1 KD cells do not confer chemoresistance to parental cells. A.

Three experimental conditions: control (CTL), KD and CTL cells plus KD conditioned medium

(CM). C. MTT assay in CTL, KD or CTL + CM cells incubated with or without vehicle (DMSO), 2

UM Doxorubicin (Doxo) or 1 uM Sorafenib for 72 h. Data represent the mean cell

proliferation * s.d. relative to CTL cells at 24 h. N=3. D. Population doubling time in CTL, KD

or CTL + CM cells incubated with or without vehicle (DMSO), 2 uM Doxorubicin (Doxo) or 1

UM Sorafenib for 72 h. Data represent the mean cell proliferation £ s.d. N = 3. *P <0.05, ** P

< 0.01 relative to CTL; & p < 0.05 relative to Doxo; *P < 0.05 relative to Sorafenib.
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Figure S4. Volcano plot representing differentially expressed genes between macroH2A1l
KD versus control cells (A), and between conditioned media (CM) KD treated cells versus
control Huh-7 cells. Orange dots: significant and differentially expressed genes. Grey dots:
statistically nonsignificant (NS) expressed genes. 783 and 987 genes were significantly and
differentially expressed (| FC|>2, adj. p-value < 0.05) over a total number of 26439 screened

genes, in macroH2A1 KD or CM KD versus control Huh-7 cells, respectively.



Supplemental Material

CMvs CTL

KD vs CTL

Gi-coupled receptor R 3
Q) el <

) i
P [
VAN |
/ \ 1
/ \ ]
/ \
P RGS20
1L1{\ - N\,
~ K
k‘/‘\h;aﬁ‘! g;;
‘ .
Rs‘\ Yo 6
N 7 v
<~ A CIRF5
S i N / \
- ___GHh \
DE—FRIBR— " 7N NN | /
/ A y\J N A D1
4 ] \_ﬁ}/ N Y _ -~ MYEF2<
{e(z / STATe’b,__,‘_.\::IFNIy;ﬁ1 .
<. GADD45G ~ Ve N - L S
) X AT TN Collagén)fipe Il . 1\ ™ alphalbeta | p/
! N e !y SN \
/ RE %z L Ay S SN \
- R A \ ~N) /
GADD45 fta 9\ TNNC2 05313\ \ NN/
o\ NV
N / RNR | AL, (-
AN _J [SLPY~ N
RMCX2 “h T /i
CA13+——GCarbeni¢anhydrasgr o §l/1ci3 : x/‘
: (camplex) / i OASte~
\\ // :
/
ARHEAP10 -y
v £ INTERLEUKIN

A=/
CA14 20s proteasome

Inflammatory and immune responses

Figure S5. Functional enrichment analysis of commonly and differentially expressed genes
in control (CTL), macroH2A1 knockdown (KD) and conditioned media (CM) Huh-7 cells. C.
Networks of differentially expressed genes in KD vs CTL (left) and CM vs CTL (right) involved
in the Inflammatory and Immune Responses functions. Over-expressed and down-regulated

molecules are colored in red and green, respectively.
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Figure S6. Conditioned media (CM) from HepG2 macroH2A1l KD cells has similar
cytokine/chemokine content to HepG2 control cells. A. 48 human cytokines/chemokines

were analyzed in the Huh-7 control (CTL) and KD cell supernatants.
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Figure S7. HCC harboring low macroH2A1l expression displays decreased CD4(+)
lymphocyte infiltration. A. Representative hematoxylin & eosin (H&E) staining of
encapsulated versus non-encapsulated Hepatocellular carcinoma (HCC) tumors from
explanted livers of patients undergoing liver transplantation as in Figure 2. Magnification,
100 X. B. Immunohistochemical staining for CD4" cells and H&E staining on poorly-
differentiated (n=18) and well-differentiated (n=16) HCC samples, from a previously
characterized cohort [1]. The right panel shows a corresponding semi-quantitative
evaluation of positivity scores (1=low, 2=moderate, 3=high) for CD4 staining for the same

cases. *p < 0.05 compared to well differentiated.
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Figure S8. A. Representative pictures of macroH2A1.1, macroH2A1.2 and j-gal
immunostaining of human liver samples with NAFLD, cirrhosis, and HCC (n = 10 per
condition) [2, 3]. All HCC cells were highly positive for macroH2A1.1, macroH2A1.2 and B-gal;
positivity of hepatocytes with NAFLD was significantly lower and was intermediate in viral
cirrhosis. Magnification: 400 X. B. After performing quantitative analysis, the results were
expressed in a semiquantitative scale (0, 0%; 1, 1%—33%; 2, 34%—66%; 3, 67%—100%). Data

were expressed as means + SE. **, P <0.01 and ***, P < 0.001.
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Figure S9. A. Representative immunohistochemical staining for p16 cells on poorly
differentiated (n = 18) and well-differentiated (n = 16) HCC samples, from a previously
characterized cohort [1]. After performing quantitative analysis, the results were expressed
in a semiquantitative scale (0, 0%; 1, 1%-33%; 2, 34%-66%; 3, 67%—100%). Data were

expressed as means * SE. *p<0.05 compared to well differentiated.
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Figure S10. MacroH2A1 KD conditioned media trigger CD4'/CD25'/FoxP3* Treg cells
expansion. T cells isolated from peripheral blood mononuclear cells of healthy volunteers
were exposed to the culture media as described in Figure 8 Legend. The Figure shows a
representative flow cytometric plot. Cells were stained for Treg markers with antibody
combination CD4/CD25/FoxP3 and gated for lymphocytes (SSC-A, FSC-A) (upper left panel)
and for CD4" (upper right panel). Four populations were then gated: CD4+/CD25'/FoxP3',

CD4*/CD257FoxP3" CD4*/CD25"/FoxP3 and CD4*/CD25"FoxP3* cells (lower left panel).

11
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Figure S11. CTL and macroH2A1 KD conditioned media trigger similar CD4*/CD25"/FoxP3"
Treg cells functional activation. The suppressing function was analyzed by CFSE-labeled
CD4+ CD25- T cells co-cultured with CD4+ CD25+ Tregs and Treg Suppression Inspector,
which was composed of anti-biotin MACSiBead™ particles preloaded with biotinylated anti-
CD2, anti-CD3, and anti-CD28 antibodies. After 4 days of culture, proliferation was measured

based on CFSE signal.

Supplemental Tables

Supplemental Table 1. Fold changes and unpaired Student’s t-test of each individual

metabolite and of each metabolic class.
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Class Metabolite Fold change | Log. (fold change) | Student's t-test (p)
Sefine 1.06 0.09 6.78E-01
Profine 1.05 0.07 6.13E-M
Valine 1.29 0.36 4.87E-02
Threonine 093 0.1 6.65E-M1
Taurine 0.68 -0.56 1.61E-01
Isoleucine 099 -0.02 947E-D1
Leucing [ik= -0.09 6.71E-M1
Asparagine 0.96 -0.05 G.4B8E-01
Glutamine 022 -2.20 2 B9E-MM
2A Methionine 0.87 -0.20 4.51E-MM
Phenylalanine 128 0.36 913E-02
Tyrosing 1.00 0.00 9.97E-M1
Tryptophan 1.14 0.19 4 29E-01
Glutathione (reduced) 1.82 087 1.97E-01
Glutathione (oxidized) 0.10 -3.36 281E-MM
S-Adenosylhomocysteine 093 -010 9.51E-1
N-Acetylglutamic acid 144 0.53 281E-MM
N-Acatyl-glutamine 037 -1.44 225E-01
Pyroglutamic acid 078 -0.36 2 TOE-O1
Hippuric acid 1.38 0.47 1.96E-01
2,3-bisphosphoglycerate 200 1.00 4. 7SE-M
2-phosphoglycerate / 3-phosphoglycerate 1.1 015 G 46E-01
6-Phosphogluconate 0.07 -3.86 2.T0E-1
D-Mannose &-phosphate and 1D-myo-Inositol 3-phosphate 016 -2.61 3.02E-02
D-Ribose 5-phosphate 012 -3.12 9.58E-02
Fructose 1,6-bisphosphate 040 -1.33 J.85E-M1
Carbohydrates | tose 6.phosphate 0.03 528 1.80E-02
Glucose 0.68 -0.56 5.66E-02
Glucose-6-phosphate 0.20 -2.30 3.83E-02
Phosphoribosyl pyrophosphate 0.18 -2.44 1.80E-01
Sedoheptulose 1.33 0.41 3.78E-MM
Sorbitol 079 -0.34 3.99E-01
3-Hydrexyglutarie acid 1.00 0.01 9.81E-M
4-Pyridoxic acid 1.54 0.63 4,29E-02
S-Methyltetrahydrofolic acid 1.32 0.40 3.78E-MM
Citrate f iso-Citrate 092 -0.13 6.66E-01
o Fumaric acid 087 -0.20 1.13E-01
Carborylic acids |y iote 086 022 £.59E-02
N-Acetylneuraminic acid 053 -0.10 7.96E-01
Crotic acid 1.19 032s 4 BOE-M1
Phosphoenolpyruvate 1.94 0.95 4 51E-1
Succinate 0.58 -0.79 5.79E-02
— I —
Fatty acid ester _JAcetyl-coenzyme A 25.17 4.69 3.15E-02
2'Deoxyinosine 079 -0.34 4 5BE-01
Guanosine 0.29 -1.81 S.63E-02
Mucleosides Inosine 058 -0.79 1.24E-01
Uridine 0499 -0.02 9.69E-M
Xanthosine 0.60 -0.73 4. 24E-01
Adenosine S'-diphosphate 0.61 -0.71 5.34E-01
ADP-Glucose 121 028 249E-M1
Adenosine S-monophosphats 0.50 099 2.36E-M1
Adenosine 5'-triphosphate 129 0.38 2 B5E-D1
Cytidine 5"-triphosphate 1.53 0.61 4,26E-02
Mucleotides 2'-Deoxyguanosine S'-iriphosphate 128 0.38 2.83E-01
Guanosine S'-diphosphate 066 -0.60 527E-1
Guanosine S'-triphosphate 129 0.37 1.99E-01
UDP-Glucose 093 0.1 721E-MM
Uracil 0.87 -0.20 2.99E-MM
Uridine 5'-triphosphate 126 033 313E-01
Flavin adenine dinuclectide 070 -0.51 1.67E-01
Micotinamide adenine dinucleotide 0.91 -0.14 2. 36E-01
Redox electron camiers |Nicotinamide adenine dinucleotide reduced 028 -1.82 2.T1E-MM
Nicotinamide adenine dinuclectide phosphate 1.35 0.44 1.31E-01
Nicotinamide adenine dinuclectide phosphate reduced 1.44 0.53 1.18E-01

Supplemental Table 2. Clinic-pathological features of 20 patients (N=10 with encapsulated
HCC + N=10 with not encapsulated/infiltrative HCC) undergoing liver transplantation for HCC
in the period 1995-2000 at the Royal Free Hospital (London, UK), included in this study.

Demographic information and HCC etiology is shown for encapsulated versus non-
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encapsulated cases. Viral hepatitis: HBC, HCV, HBV/HCV, HBC/HDV. Cryptogenic: of unknown

origin; Alpha 1 T: alpha-1-antitrypsin deficiency.

Male Viral Viral hepatitis Alpha
HCC N gender Age hepatitis Alcohol + alcohol Cryptogenic 1T
Not
encapsulated 10 100% 53.948.3 3 3 2 1 1
Encapsulated 10 70% 53.6+7.7 7 2 0 1
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