Supplemental figures and legends

*znf*322*a* transgenic mouse 1

znf322a transgenic mouse 2

Figure S1. *znf322a* transgenic mice did not show spontaneous lung tumorigenesis *in vivo*. The mice were sacrificed and lung lobes were removed for histopathology. H&E staining of histopathological section were viewed and scanned images of the entire lung were collected. Two representative mice images are shown. A total of 30 mice were followed for two years to ascertain the tumor formation status.

Figure S2. Dominant-negative Kras^{S17N} mutation attenuated *ZNF322A* transcription. **A**, Immunoblotting analysis confirmed that dominant-negative Kras (HA-Kras^{S17N}) was overexpressed in H1299 cells. **B**, *ZNF322A* mRNA expression was reduced upon Kras^{S17N} overexpression in H1299 cells. **C**, *ZNF322A*-pGL4 promoter activity was reduced upon Kras^{S17N} overexpression in H1299 cells. **D**ata were mean ± SEM and normalized to the control group (-). *, *P*<0.05; ***, *P*<0.001.

Figure S3. The tested transcription factors in H460 cells. A, RT-qPCR analysis showed that overexpression of E2F1, ELK1, NF κ B (p65), Oct4, Sp1 or STAT3 did

not affect *ZNF322A* mRNA expression in H460 cell. **B**, RT-qPCR revealed that *YY1* mRNA expression was upregulated by Kras^{G13V} in a dose-dependent manner (*left*), while *Sp1* mRNA expression was induced by Kras^{G13V} overexpression at the 72 h time point in H460 cells (*right*). Target gene expression levels were normalized to the expression level of housekeeping gene β -actin. Data were then normalized to the empty vector control (-) group. Data were mean ± SEM and normalized to the control group. *, *P*<0.05; **, *P*<0.01.

Figure S4. The protein levels of the YY1 overexpression and knockdown in tested cell lines. **A**, Western blotting confirmed that YY1 was successfully overexpressed in H1299 Kras^{WT}, H1299 Kras^{G13V} and H460 Kras^{Q61H} cells. **B** and **C**, Western blotting revealed that the #2 shYY1 clone showed a better knockdown efficiency than the #1 clone (B). The #2 clone exerted a dose-dependent knockdown of YY1 in H460 Kras^{Q61H} cells (C). Therefore, the #2 clone was used for all YY1 knockdown experiments.

Figure S5. YY1/ZNF322A/Shh axis regulated transwell migration assay and tumor formation abilities of HUVECs. **A** and **B**, Transwell migration assay (A) and tumor formation assay (B) showed that CM derived from si*Shh* in ZNF322A overexpressing (*group 4*) cells inhibited HUVECs migration ability or tumor formation ability compared with CM from ZNF322A-overexpressed (*group 3*) H1299 lung cancer cells. Knockdown of ZNF322A (*group 5*) or YY1 (*group 6*) in H1299 lung cancer cells also attenuated HUVECs migration and tumor formation abilities (panels 5 and 6). siShh was included for comparison (*group 2*). The migration ability was monitored at 24 h with each group quantified by comparising with initial seeding number of HUVECs (*Upper left*). The tube formation was monitored at 6-8 h with each group quantified for the tube length (*Lower left*). Data are presented as mean ± SEM. *P*-values determined using two-tailed Student's *t*-test. **P*< 0.05; ** *P*< 0.01; *** *P*< 0.001.

Figure S6. CD31 angiogenesis marker and staining of YY1, ZNF322A and Shh by IHC in tumor xenograft of H460 Kras^{Q61H} lung cancer cells. **A**, The level and distribution of CD31, an endothelial cells marker, and Shh increased in tumor xenograft of ZNF322A-overexpressing H460 lung cancer cells while decreased in siZNF322A xenograft compared to the control H460 Kras^{Q61H} group. **B**, The angiogenesis of each group was measured by percentage of the area of CD31-positive stained cells in the detected regions. *P* values were calculated by two-tailed *t*-test. Data were mean ± SEM. **, *P*<0.01.

Supplemental tables

Table S1.	. The plasm	ids and their	[•] characteristics	used in the study.	

Plasmid	Target	Insert (bp)	Function	Source
HA-pOPI3-Kras ^{G13V}	Kras ^{G13V}	685	Overexpression	From Dr. H-S Liu
pHβlacI	lacI	1100	Overexpression	From Dr. H-S Liu
HA-pcDNA3.1-Kras ^{S17N}	Kras ^{S17N}	670	Overexpression	From Dr. H-S Liu
pCMV-SPORT6-E2F1	E2F1	1314	Overexpression	GenDiscovery
pLAS2w-Elk1	Elk1	1286	Overexpression	From Dr. J-Y Liu
HA-pCDNA3-Sp1	Sp1	2358	Overexpression	From Dr. J-J Hong
pCMV4-NFкB (p65)	NFκB (p65)	2500	Overexpression	From Dr. Y-N Teng
pPyCAGIP-Flag-Oct4	Oct4	1083	Overexpression	From Dr. Ying Jin
pCMV-HA	None	a	Vector control	Clontech
HA-ZNF322A	Wild type ZNF322A	1083	Overexpression	Homemade ^b
pLHCX-YY1	YY1	1242	Overexpression	From Dr. H-L Hsu
pBS-Shh	Sonic hedgehog	749	Overexpression	Addgene
pGL4-vector	None	a	Vector control	Promega
ZNF322A-pGL4	ZNF322A promoter	752	Promoter activity assay	Homemade ^b
Del-ZNF322A-pGL4	ZNF322A promoter with deletion	352	Promoter activity assay	Homemade ^b
Shh-pGL4	Shh promoter	977	Promoter activity assay	Homemade ^b
Mut-Shh-pGL4	Shh promoter with mutation	977	Promoter activity assay	Homemade ^b
Renilla	None	a	Vector control	Promega

^a The plasmid is used as a backbone vector therefore has no inserted fragment.

^b Human ZNF322A cDNA was PCR-amplified and cloned into pCMV-HA to generate HA-tagged ZNF322A expression construct. For ZNF322A-pGL4 plasmid, human *ZNF322A* promoter region (-529 to +223) was PCR-amplified and cloned into pGL4 expression vector to generate *ZNF322A* promoter luciferase reporter plasmid. For Del-ZNF322A-pGL4 plasmid, human *ZNF322A* promoter region (-129 to +223) was PCR-amplified and cloned into pGL4 expression vector to generate YY1 element-deleted *ZNF322A* promoter luciferase reporter plasmid. For Shh-pGL4 plasmid, human *Shh* promoter region (-678 to +298) was PCR-amplified and cloned into pGL4 expression vector to generate region (-678 to +298) was PCR-amplified and cloned into pGL4 expression vector to generate and cloned into pGL4 expression vector to generate region (-678 to +298) was pCR-amplified and cloned into pGL4 expression vector to generate mutant *Shh* promoter region (-678 to +298) was pCR-amplified, among +87 to +89 (GTT→AGG) was mutated and cloned into pGL4 expression vector to generate mutant *Shh* luciferase reporter plasmid.

Gene	Primer	Sequences $(5' \rightarrow 3')$	Application ^a F	PCR size (bp)	Tm (°C)
Actin mRNA	Forward	GGC GGC ACC ACC ATG TAC CCT		202	60
	Reverse	AGG GGC CGG ACT CGT CAT ACT	RI-qPCK	202	
ZNE2224 DNIA	Forward	GTG GTC TGC GTG TGA GAG TGG C		226	(0)
ZINF 522A IIIKINA	Reverse	TTC TGA CGC ATG GGG AGG GCT	RI-qPCK	220	00
VV1 mDNA	Forward	TTG CTA GAA TGA AGC CAA GAA AAA		101	60
III IIIKINA	Reverse	GGC CGA GTT ATC CCT GAA CAT	KI-qPCK	101	
	Forward	CCC AAT TAC AAC CCC GAC ATC		140	(0)
Snn mKINA	Reverse	TCA CCC GCA GTT TCA CTC CT	RI-qPCK	142	60
	Forward	GCA GAG CAG ATG GTT ATG GTG AT		125	60
E2F1 MKNA	Reverse	GGG CAC AGG AAA ACA TCG AT	RI-qPCK	125	
	Forward	TCACGGGATGGTGGTGAATT		146	60
ELKI IIIKINA	Reverse	ACCTTGCGGATGATGTTCTTG	KI-qPCK	140	
	Forward	GCG AGA GGC CAT TTA TGT GT		189	58
Sp1 mknA	Reverse	GGC CTC CCT TCT TAT TCT GG	KI-qPCK		
NE D (165) = DNA	Forward	GGC CTT GCT TGG CAA CAG		100	60
<i>NF KB (pos)</i> mRNA	Reverse	CAC AGG TAT GCC CTG GTT CA	KI-qPCK	100	
	Forward	CGA AAG AGA AAG CGA ACC AG		157	(0)
Oct4 mKNA	Reverse	GCC GGT TAC AGA ACC ACA CT	RI-qPCK	157	60
	Forward	TTT CAG GAG GCT GGA GGA AGG GG		107	60
<i>c-Jun</i> IIIKINA	Reverse	AAT GGT CAC AGC ACA TGC CAC T	KI-qPCK	107	
	Forward	CCA TTA CCC ACC GCT GAA A		105	60
$HIF - I \alpha \text{ mRNA}$	Reverse	GGG ACT ATT AGG CTC AGG TGA ACT T	RI-qPCK	195	
VEGFA mRNA	Forward	TAC CTC CAC CAT GCC AAG TG		100	(0
	Reverse	TGC GCT GAT AGA CAT CCA TGA	RT-qPCK 100		00
	Forward	CCT TTC CAC CCC AAA TTT ATC A	RT-qPCR 160		60
<i>IL-δ</i> mRNA	Reverse	CCC TCT TCA AAA ACT TCT CCA CAA			

Table S2. The primers used in the current study.

Gene	Primer	Sequences $(5' \rightarrow 3')$	Application ^a	PCR size (bp)	Tm (°C)
NOTCH1 mRNA	Forward	GGC ACG ACG CCA CTG ATC		199	60
	Reverse	CCC TGT TGT TCT GCA TAT CTT TGT	RI-qPCR		
<i>TGFβ2</i> mRNA	Forward	AAA GCC AGA GTG CCT GAA CAA		150	60
	Reverse	AAC AGC ATC AGT TAC ATC GAA GGA	RI-qPCR		
COL15A1 mRNA	Forward	GGA AAA AAT TAC AGC TGG GAG AAC		1.5.5	(0)
	Reverse	GTT CAG AGC AGC CAA ATG CA	RI-qPCR	155	60
ZNF322A-promoter	Forward	TGA TTT ACT CTT AGC TGA TT	Construction	752	60
	Reverse	AGA CTC TGC GAT AGT AGA TC	Construction		
Del-ZNF322A-promoter	Forward	AAA ACG CCG AGG GCT CCC AG	delation	352	70
	Reverse	AGA CTC TGC GAT AGT AGA TC	deletion		
ZNF322A-promoter-ChIP	Forward	CTT TCT CTC GCT GCT GTT TTC TC	ChID aDCD	100	60
	Reverse	GGC AGC GCT GTC ATC CA	Chip-qPCR		
Shh-promoter	Forward	GCG CGG TAC CCG GGG GTT TAA AC	- Construction	077	62
	Reverse	GCG CCT CGA GTG AGT CAT CAG CC		911	
Mut-Shh-promoter	Forward	GGG CAG GGG AGG CGG GAA G	Site-direct	b	(0)
	Reverse	CTT CCC GCC TCC CCT GCC C	mutagenesis –		62
Shh promotor ChID	Forward	GCG CAA AGC GCA AGA GAG AGC G	ChIP-qPCR 210		62
Snn-promoter-ChiP	Reverse	GCG CTT TTG GGG TGC CTC CTC T			

"Kras/YY1/ZNF322A/Shh axis promotes neo-angiogenesis" by Lin et al

^a qRT-PCR, quantitative reverse-transcriptase polymer chain reaction; ChIP-qPCR, quantitative chromatin-immunoprecipitation coupled with polymer chain reaction.

^b Not applicable.

Target	KD	Raised In	Application ^a	Dilution	Source	Catalog No.
ZNF322A	4.4	Mouse	IHC	1:100	Homemade ^b	c
	44		Western blotting	1:1000		
UA tog	с	Mouse	Western blotting	1:1000	D ¹	HAT001M
HA-tag	_		ChIP	1:50	Dioman	
GAPDH	37	Mouse	Western blotting	1:1000	Santa Cruz	sc-32233
YY1		Rabbit	IHC	1:200	Abcam	ab38422
	65		Western blotting	1:200		
			ChIP	1:100		
Shh	55	Dabhit	IHC	1:500	Abcam	AL52001
		καυυπ	Western blot	1:1000		A033281
CD31	100	Rabbit	IHC	1:300	Abcam	ab28364

Table S3. Antibodies and their reaction conditions in the study.

^a IHC: immunohistochemistry; ChIP: chromatin immunoprecipitation.

^b Homemade, Anti-ZNF322A was generated by Kelowna International Scientific Inc, Taiwan using synthetic peptides (CNVSEKGLELSPPHASE).

^c –, Information is not applicable.