Median age	66 years (range 36–86 years)
Sex (Male/Female)	85(60.7%) / 55 (39.3%)
pT category	
T1	4(2.9%)
T2	3(2.1%)
Т3	129(92.1%)
Τ4	4(2.9%)
pN category	
pN0	28 (20.0%)
pN1	112 (80.0%)
UICC stage	
Ι	4(2.8%)
II	126(90.0%)
III	3(2.1%)
IV	7(5.0%)
Residual tumor category	
R0	93 (66.4%)
R1	47 (33.6%)
Histologic grade	
Grade 1	47(33.6%)
Grade 2	54(38.5%)
Grade 3	39(27.9%)
Vascular invasion	
Negative	48 (34.3 %)
Positive	92 (65.7 %)
Perineural invasion	
Negative	21 (15.0%)
Positive	119 (85.0 %)
Lymphatic invasion	
Negative	32 (22.9%)
Positive	108 (77.1%)
Liver metastasis	
Negative	92 (65.7%)
Positive	48 (34.3%)

 Table S1: Clinicopathological characteristics of patients (n=140)

Figure S1. Semi-quantification of LAMA4 expression according to IHC staining intensity. (A) Flow chart of the *in vivo* selection process for HM human pancreatic cancer cell lines. Five consecutive rounds were performed for *in vivo* selection of liver metastasis; metastatic cells were harvested to establish HM PANC-1 cells. (B) DAB and hematoxylin staining results were digitally separated using an ImageJ plugin for color deconvolution. (C) A total of 140 pancreatic cancer tissues were analyzed by LAMA4 IHC staining and Image J. Each spike represents the OD value of an individual pancreatic cancer sample. The average OD value (0.129486) of LAMA4 expressed on blood vessels was used as a threshold. Then, patients were assigned into LAMA4 high and LAMA4 low expression groups according to the threshold. Among the 140 samples, 90 (64.3%) cases were in the high LAMA4 expression group and 50 (36.7%) were in the low LAMA4 expression group.

Α

в

Logistic regression analysis

	Tumor histologic grade	Total (N)	Odds ratio in LAMA4 expression	<i>p</i> -Value
Clinical	Grade 1 vs Grade 2	101	5.69	0.000166
	Grade 1 vs Grade 3	86	14.07	6.34e-07
TCGA	Grade 1 vs Grade 2	125	3.77	0.00311
	Grade 1 vs Grade 3 / 4	81	1.77	0.24245
ICGC-CA	Grade 1 vs Grade 2	77	7.55	0.01064
	Grade 1 vs Grade 3	62	20.08	0.00024
	Grade 1 vs Grade 4	26	45.00	0.00406

Figure S2. Validation of HM PANC-1 and association between LAMA4 expression and pancreatic cancer histologic grade. (A) Evaluation of metastatic tumor formation in liver by CT scan. (B) Logistic regression analysis testing relationship between LAMA4 expression and tumor histologic grade.

Figure S3. Association between LAMA4 expression and metastasis. (A) qRT-PCR analysis of LAMA4 mRNA levels in WT and LAMA4-depleted pancreatic cancer cell lines. Samples were normalized against GAPDH mRNA levels. (B) The effects of LAMA4 knockdown on cell viability was measured in AsPC1 cells. (C) The effects of LAMA4 knockdown on cell migration and invasion were examined in AsPC1 cells. LAMA4 knockdown did not affect cell migration and invasion in vitro. (D) *In vivo* IVIS images of tumor growth of luciferase-expressing AsPC-1 cells (WT or LAMA4-depleted) implanted in spleen of mice after the indicated times. Tumor tissues on liver were recognized as white nodules on the periphery of liver. Quantitative comparison of signals from the IVIS luciferase images was performed. (E) Tumors liver colonization condition on day 28 of IVIS examination. The tumors on liver were recognized as white nodules on liver. (F) IHC staining confirming successful downregulation of LAMA4 in tumor tissues in livers. Quantification of LAMA4 staining was carried out for comparison.

Intersection of GO terms

positive regulation of cell adhesion extracellular structure organization extracellular matrix organization regulation of cell-cell adhesion cell-substrate adhesion

LAMA4 related GO terms (ICGC)

LAMA4 related GO terms (TCGA)

В

Figure S4. Functional annotation of LAMA4. (A) GO enrichment analysis of differentially expressed genes between WT and HM pancreatic cancer cell lines. Gene expression profiling data of WT and HM pancreatic cancer cell lines were analyzed and differentially expressed genes were identified ($|\log FC| > 1$, p < 0.05). The packages used for R program were "clusterProfiler", "org.Hs.eg.db", "enrichplot" and "ggplot2". The setup of parameters for r script were pvalueCutoff =0.05, qvalueCutoff = 0.05. (B) LAMA4-related gene ontology terms. The genes that strongly correlated with LAMA4 were screened by Spearman's correlation analysis (spearman |R| > 0.4) based on the TCGA and ICGC datasets. Biofunctions of the genes were explored by GO analysis.

R script

1. R script for GO analysis:

```
library("clusterProfiler")
```

```
library("org.Hs.eg.db")
```

```
library("enrichplot")
```

```
library("ggplot2")
```

```
term <- enrichGO(gene = gene,</pre>
```

```
OrgDb = org.Hs.eg.db,
```

```
pvalueCutoff =0.05,
```

```
qvalueCutoff = 0.05,
```

```
ont="all",
```

```
readable =T)
```

2. R script for violin-boxplot wilcox analysis:

```
library(ggplot2)
library(ggpubr)
Sys.setenv(LANGUAGE = "en")
options(stringsAsFactors = FALSE)
tmp <- read.csv("input.csv", row.names = NULL, check.names = F, header = T,
stringsAsFactors = F)
head(tmp)
table(tmp$type)
p <- wilcox.test(tmp[which(tmp$type == ""),""],tmp[which(tmp$type == ""),""])$p.value
3. R script for survival analysis:
library(survival)
library(survminer)
svdata <- read.csv ("input.csv", header = T, row.names = 1)</pre>
dim(svdata)
res.cut <- surv cutpoint(svdata, time = "futime",
               event = "fustat",
               variables = names(svdata)[3:ncol(svdata)],
               minprop = 0.3)
res.cat <- surv categorize(res.cut)
my.surv <- Surv(res.cat$futime, res.cat$fustat)</pre>
pl<-list()
```

for (i in colnames(res.cat)[3:ncol(svdata)]) {
 group <- res.cat[,i]
 survival_dat <- data.frame(group = group)
 fit <- survfit(my.surv ~ group)</pre>