
SUPPLEMENTARY METHODS 

FDG PET imaging 

FDG PET imaging was acquired according to the clinical routine protocol of our center. 

A dose of 5·18 MBq/kg of FDG was intravenously injected after patients fasted for > 6 hours 

before the PET imaging. The emission scan was acquired 60 minutes after the FDG injection 

on dedicated PET/CT scanners (Biograph mCT40 and mCT64, Siemens Healthcare, Germany). 

After the emission scan, a CT scan was consecutively obtained for attenuation correction. PET 

images were reconstructed using ordered-subset expectation maximization with an iteration 

number of 2 and 21 subsets. The reconstructed image matrix size was 256 × 256. FDG PET 

data of the Stanford and TCGA datasets were acquired according to the standard protocols of 

each center.  

 

Tumor segmentation  

A spherical volume-of-interest was drawn to include target tumor lesion for each 

patient. As a semiautomatic tumor segmentation, an adaptive threshold of SUV was used to 

delineate the margin [1]. This tumor segmentation process was performed on LIFEx software 

(ver 4.0.0, www.lifexsoft.org) [2]. Then, we set a 3-dimensional bounding box to include the 

segmented tumor. To consider the pattern of the tumor margin, two voxels of 6-directions (two 

directions for x, y, and z dimensions each) were additionally padded to the bounding box. This 

3-dimensional cube volume was used as an input for the model. As the matrix size of FDG PET 

is different according to the reconstruction algorithm, the segmented cube-shaped volume was 

resliced to have the same voxel size, 4·0 mm3.   

 



Training of the deep learning model 

The segmented tumor was an input for the deep learning model. The cube-shaped volume 

that included the segmented tumor and padding described above was scaled by using a simple 

equation with standardized uptake value (SUV): 𝐶𝑣𝑜𝑥𝑒𝑙,𝑖 = (𝑆𝑈𝑉𝑣𝑜𝑥𝑒𝑙,𝑖 − 0.5)/20 . Because 

the size of input images was variable, a convolutional neural network was designed to produce 

outputs regardless of the matrix size of the input. More specifically, two convolutional layers 

with 16 and 32 convolutional kernels were followed by a global max pooling layer [3]. The 

activation function of two convolutional layers was tanh (Figure S1). The global max pooling 

layer produced 32-dimensional feature vectors regardless of the input size. In addition, 128-

dimensional feature vectors were produced by a fully connected layer. The target output was 

cytolytic activity score (CytAct) [4], defined by the expression of granzyme A (GZMA) and 

perforin 1 (PRF1) normalized by z-score. We used a 10-fold cross-validation using pairs of the 

segmented tumor and RNA-seq of Stanford cohort (n = 93) to optimize the training of the deep 

learning model by determining training parameters and model architectures. Furthermore, to 

overcome the limited number of data, image data of the training set were augmented by 

randomly rotating segmented tumors with 3 axes for each iteration of the training except the 

internal validation set selected by the cross-validation. The segmented tumor images of the two 

external validation sets (SNUH and TCGA cohorts) were not used until the model was 

optimized by the training/internal validation sets. The loss function of the neural network was 

defined by mean-absolute-error between predicted immune profiles, i.e. the CytAct and those 

estimated by RNA-seq. To train the model, an ADAM optimizer was used. The number of 

epochs for iterative training was set as 50.  
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SUPPLEMENTARY FIGURES 

 

Figure S1. Tumor size adaptive 3D CNN model 

Figure depicting the 3D CNN model for the deep learning algorithm used in this study. Two 

3-dimensional convolutional layers were applied to the input volume, which included the 

segmented tumor lesion. After the two convolutional layers, a global max-pooling layer was 

applied to extract feature vectors. A fully connected layer was followed, and then the hidden 

features were connected to the output of CytAct estimated by RNA-sequencing data. 

  



 

Figure S2. Correlation of RNA-seq based CytAct with IFNG score and Immune score in 

the training cohort 

Scatterplots depict correlation of RNA-seq based CytAct with IFNG score (left) and Immune 

score (right). Each dot represents each sample in the training cohort. The blue dashed line 

represents regression line in each plot. RNA-seq based CytAct significantly correlated with 

both IFNG score (spearman rho = 0.50, p < 0.001) and Immune score (spearman rho = 0.66, p 

< 0.001), implicating that CytAct may represent tumor immune profiles in the training cohort.  



 

Figure S3. Relationships of CytAct with conventional PET parameters 

The upper 6 plots show relationships between calculated CytAct from RNA sequencing data 

and either maximum standardized uptake value (SUV) or metabolic tumor volume (MTV) in 

each cohort. The lower 6 plots show relationships between predicted CytAct values and either 



maximum SUV or MTV in each cohort. 

  



 

Figure S4. Predicted CytAct in correlation with immune cell profiles of the tumor 

microenvironment 

(A) Heatmap showing immune cell enrichment analysis. The immune cell enrichment 

analysis results are expressed as xCell expression. Each column represents each patient and 



each row represents the immune cell type as annotated. On the top of the heatmap, calculated 

CytAct by RNA-sequencing data (Calculated CytAct) and deep learning-predicted CytAct 

(Predicted CytAct) are shown. (B, C) Correlation of Calculated CytAct (Predicted CytAct) 

values and CD8+ T cell enrichment values (Spearman rho 0.50, p < 0.001 for calculated 

CytAct and spearman rho 0.33, p = 0.001 for predicted CytAct). 

  



 

Figure S5. The relationship between predicted CytAct and PD-L1 IHC percentage in 

matched lesions 

(A) Waterfall plot arranged by size changes in each lesion. Each bar on the same X-axis on 

upper and lower plots represents the same lesion. The bars in the upper plot were colored 



according to predicted CytAct, yellow being higher and blue being lower, while those in the 

lower plot were colored according to PD-L1 IHC status of the original patient. (B) The dot 

plot shows correlation of PD-L1 IHC percentage and predicted CytAct (Spearman rho 0.25 

and p = 0.22). Each dot represents a lesion. The size and color of a dot represents absolute 

and relative percentage size change, respectively. The dashed line shows the regression line. 

(C) A table showing value of predicted CytAct, PD-L1 IHC percentage, size change and 

response. 

  



 

Figure S6. Performance of other representative CytAct values in predicting response to 

immunotherapy. 

(A, B) ROC curve showing performance of mean and maximum predicted CytAct of a 

patient in determining whether a patient showed PR to immunotherapy (AUC = 0.84, 95% CI 

0.69 – 0.98 for mean predicted CytAct and AUC = 0.74, 95% CI 0.54 – 0.93 for maximum 

predicted CytAct). AUC, area under curve; CI, confidence interval 

 

  



 

Figure S7. Kaplan-Meier survival curves showing PFS and OS of immunotherapy 

according to the predicted CytAct heterogeneity group.  

The patients were divided into high and low variable groups by median value of predicted 

CytAct variances. Highly variable predicted CytAct tended to associate with shorter PFS (HR 

2·67 and 95% CI 0·89 – 7·97) and OS (HR 3·66 and 95% CI: 0·87 – 15·38). Censored data 

are marked with cross segments and numbers at risk are demonstrated on each table. 

 


