Supporting Information

Synthesis and preliminary studies of 11C-labeled tetrahydro-1,7-naphthyridine-2-carboxamides for PET imaging of metabotropic glutamate receptor 2

Xiaofei Zhang,1,2,† Yiding Zhang,3,† Zhen Chen,1 Tuo Shao,1 Richard Van,4 Katsushi Kumata,3 Xiaoyun Deng,1 Hualong Fu,1 Tomoteru Yamasaki,3 Jian Rong,1 Kuan Hu,3 Akiko Hatori,3 Lin Xie,3 Qingzhen Yu,1 Weijian Ye,5 Hao Xu,5 Douglas J. Sheffler,6 Nicholas D. P. Cosford,6 Yihan Shao,4 Pingping Tang,2 Lu Wang,1,5,∗ Ming-Rong Zhang,3,∗ Steven H. Liang1,∗

1Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, MA, 02114, USA
2State Key Laboratory and Institute of Elemento-Organic Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
3Department of Radiopharmaceuticals Development, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
4Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
5Department of Nuclear Medicine and PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, Tianhe District, Guangzhou 510630, China
6Cancer Metabolism and Signaling Networks Program and Conrad Prebys Center for Chemical Genomics, Sanford-Burnham Prebys Medical Discovery Institute, La Jolla, California 92037, United States

∗Corresponding authors.
liang.steven@mgh.harvard.edu (S. H. Liang); zhang.ming-rong@qst.go.jp (M.-R. Zhang); l_wang1009@foxmail.com (L. Wang)
†These two authors contributed equally to this work.
Contents

Figure S1. Concentration-response curves of mGlu₂ NAMs compounds 14 in mGlu₂ GIRK or mGlu₃ GIRK functional assays...1

Figure S2. Time-activity curves of $[^{11}\text{C}]14\text{a}$ in rat brains...2

Figure S3. Radiometabolite analysis of $[^{11}\text{C}]14\text{a}$ in rat brain and plasma..3

Table S1. Radiometabolite and parent (unchanged) fraction of $[^{11}\text{C}]14\text{a}$ in rat brain and plasma3

Figure S4. RadioHPLC chromatogram in the brain and plasma 5 min post injection of $[^{11}\text{C}]14\text{a}$.....4

Figure S5. RadioHPLC chromatogram in the brain and plasma 20 min post injection of $[^{11}\text{C}]14\text{a}$.4

Figure S6. Radiometabolite analysis of $[^{11}\text{C}]14\text{b}$ in rat brain and plasma.................................5

Table S2. Radiometabolite and parent (unchanged) fraction of $[^{11}\text{C}]14\text{b}$ in rat brain and plasma5

Figure S7. RadioHPLC chromatogram in the brain and plasma 5 min post injection of $[^{11}\text{C}]14\text{b}$................5

Figure S8. RadioHPLC chromatogram in the brain and plasma 20 min post injection of $[^{11}\text{C}]14\text{b}$.6

Figure S9. Image of the ROIs used for quantification of in vitro autoradiography.................................7

Figure S10. Functional (agonist and antagonist) assays of compound 14b towards mGlu receptors...7

Figure S11. Off-target pharmacological evaluation of compound 14b at a concentration of 10 μM against major CNS targets...8

Figure S12. Representative PET/MRI fused images...9

NMR spectra of synthesized compounds..10
Figure S1. Concentration–response curves of mGlu NAMs compounds 14a-14g in mGlu GIRK or mGlu GIRK functional assays.
A. Baseline studies of $[^{11}\text{C}]14\text{a}$

B. Baseline studies with pretreatment of 14a

Figure S2. Time-activity curves of $[^{11}\text{C}]14\text{a}$ in rat brains. *Blocking conditions: 14a (1 mg/kg), 30 min i.v. before radioligand injection.*
Figure S3. Radiometabolite analysis of \([^{11}\text{C}]14\text{a}\) in rat brain (average two runs)

Table S1. Radiometabolite and parent (unchanged) fraction of \([^{11}\text{C}]14\text{a}\) in rat brain and plasma

<table>
<thead>
<tr>
<th></th>
<th>Metabolite (%)</th>
<th>Unchanged (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma 5 min–1</td>
<td>11.96</td>
<td>88.04</td>
</tr>
<tr>
<td>Plasma 5 min–2</td>
<td>17.06</td>
<td>82.94</td>
</tr>
<tr>
<td>Plasma 20 min–1</td>
<td>44.51</td>
<td>55.49</td>
</tr>
<tr>
<td>Plasma 20 min–2</td>
<td>38.26</td>
<td>61.74</td>
</tr>
<tr>
<td>Brain 5 min–1</td>
<td>0.06</td>
<td>99.94</td>
</tr>
<tr>
<td>Brain 5 min–2</td>
<td>0.49</td>
<td>99.51</td>
</tr>
<tr>
<td>Brain 20 min–1</td>
<td>7.3</td>
<td>92.7</td>
</tr>
<tr>
<td>Brain 20 min–2</td>
<td>5.76</td>
<td>94.24</td>
</tr>
</tbody>
</table>

Figure S4. RadioHPLC chromatogram in the brain and plasma 5 min post injection of \([^{11}\text{C}]14\text{a}\)
Figure S5. RadioHPLC chromatogram in the brain and plasma 20 min post injection of 14C14a

Figure S6. Radiometabolite analysis of 14C14b in rat brain (average two runs)

Table S2. Radiometabolite and parent (unchanged) fraction of 14C14b in rat brain and plasma

<table>
<thead>
<tr>
<th></th>
<th>Metabolite (%)</th>
<th>Unchanged (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma 5 min-1</td>
<td>21.32</td>
<td>76.68</td>
</tr>
<tr>
<td>Plasma 5 min-2</td>
<td>44.31</td>
<td>56.69</td>
</tr>
<tr>
<td>Plasma 20 min-1</td>
<td>69.32</td>
<td>30.78</td>
</tr>
<tr>
<td>Plasma 20 min-2</td>
<td>67.60</td>
<td>32.40</td>
</tr>
<tr>
<td>Brain 5 min-1</td>
<td>0.28</td>
<td>99.72</td>
</tr>
<tr>
<td>Brain 5 min-2</td>
<td>0.04</td>
<td>99.96</td>
</tr>
<tr>
<td>Brain 20 min-1</td>
<td>0.97</td>
<td>99.03</td>
</tr>
<tr>
<td>Brain 20 min-2</td>
<td>1.22</td>
<td>98.78</td>
</tr>
</tbody>
</table>
Figure S7. RadioHPLC chromatogram in the brain and plasma 5 min post injection of $[^{11}C]14b$
Figure S8. RadioHPLC chromatogram in the brain and plasma 20 min post injection of 11C14b
Figure S9. Image of the ROIs used for quantification of in vitro autoradiography. (A) Brain sections were treated with $[^{11}\text{C}]14\text{a}$; (B) Brain sections were pre-treated with 14a (10 μM), followed by $[^{11}\text{C}]14\text{a}$; (C) Brain sections were pre-treated with QCA (10 μM), followed by $[^{11}\text{C}]14\text{a}$; (A) Brain sections were treated with $[^{11}\text{C}]14\text{b}$; (B) Brain sections were pre-treated with 14b (10 μM), followed by $[^{11}\text{C}]14\text{b}$; (C) Brain sections were pre-treated with QCA (10 μM), followed by $[^{11}\text{C}]14\text{b}$.

Figure S10. Functional (agonist and antagonist) assays of compound 14b towards mGlu receptors, including mGlu1, mGlu4, mGlu5, mGlu6 and mGlu8.
Figure S11. Off-target pharmacological evaluation of compound 14b at a concentration of 10 μM against major CNS targets, including common GPCRs, enzymes, ion channels and transporters: Initial screening at a concentration of 10 μM. All data are mean ± SD (n = 4). No significant off-target binding (>50%) was observed at 10 μM compound testing concentration.
Figure S12. Representative PET/MRI fused images (summed at 0-10 min, 10-30 min and 30-60 min) and time-activity curves of $[^{11}C]14b$ under baseline and blocking conditions in SD rat brain. Blocking conditions: 14b (1 mg/kg), 30 min i.v. before radioligand injection; Blocking conditions: 14a (3 mg/kg), 30 min i.v. before radioligand injection. Data are presented as mean ± SEM (n = 3).
NMR spectra of synthesized compounds

1H spectrum of 11a

![11a](image_url)
13C spectrum of 11a

![Chemical Structure](image)

11a
1H spectrum of 11b
13C spectrum of 11b
1H spectrum of 11c
13C spectrum of 11c

![Chemical Structure of 11c]
1H spectrum of 11d
13C spectrum of 11d

11d

94.55
69.52
1H spectrum of 11g
13C spectrum of 11g
1H spectrum of 13a
13C spectrum of 13a
1H spectrum of 13b

13b
13C spectrum of 13b
1H spectrum of 13c
^{13}C spectrum of 13c
1H spectrum of 13d
13C spectrum of 13d
1H spectrum of ^{13}e
13C spectrum of 13e
1H spectrum of 13f
^{13}C spectrum of 13f
1H spectrum of 13g
13C spectrum of 13g
1H spectrum of 14a
13C spectrum of 14a
1H spectrum of 14b
13C spectrum of 14b
1H spectrum of 14c
13C spectrum of 14c
1H spectrum of 14d
13C spectrum of 14d
1H spectrum of 14e
13C spectrum of 14e
1H spectrum of 14f
13C spectrum of 14f
^{1}H spectrum of 14g
13C spectrum of 14g
1H spectrum of 16
13C spectrum of 16

![Chemical Structure Image]
1H spectrum of 17
13C spectrum of 17
1H spectrum of 18
^{13}C spectrum of 18