Supplementary Materials for:

Ceria-based nanotheranostic agent for rheumatoid arthritis

Irina Kalashnikova^{1†}, Seock-Jin Chung^{1†}, Md Nafiujjaman¹, Meghan L. Hill¹, Mzingaye E. Siziba¹, Christopher H. Contag^{1,2}, and Taeho Kim^{1*}

¹Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering, ²Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA

*Corresponding Author: <u>kimtae47@msu.edu</u>

[†]*I.K. and S-J.C. contributed equally to this work.*

Figure S1. Schematic representation for nanoceria synthesis without albumin substrate presence. The inset shows a picture of nanoparticle (nanoceria) suspension from this synthesis, which is turbid due to the low solubility.

Signal	Signal identity, relevant samples
IR data (cm ⁻¹ ; s = shift; v = stretching; δ = bending)	
3290 s 3281	v (N-H)
1700–1600	v (C=O)
1522 s 1537	ν (C–N), δ(C-NH)
1642 s 1645	α-helix of BSA
1645, 1362	A-C e^{3+} complex
1348 s 1318	Ce=O, $v(C-N)$, $\delta(C-NH)$
1039 to 1041	Ce=O
928	N (C-C) proline, valine
851 s 847, 843 s 838,	δ,ν (Ce-O)
825	ν (Ce-O-C)
729 s 730	v (Ce–O–Ce)
634 s 627, 619 s 618	δ (Ce–O–C)
581 s 584, 548 s 551, 524 s 523	ν (Ce-O)
UV-Vis (a.u.; s = shift)	
232, 278	Albumin
249 s 253	Ce ³⁺
273 s 271	Ce ³⁺
305 s 307	Ce ⁴⁺
526	Doping by ceria
667 s 728	ICG

Table S1. Summarized data on spectroscopies analysis for FT-IR (top) of A-nanoceria andfor UV-Vis (bottom) of A-nanoceria-ICG (associated with Figure 3A-B).

Figure S2. Additional characterization of (**A**) Zeta potential of A-nanoceria at different pH (4.5, 5.5, 6.5, and 7.4); (**B**) EDS analysis determined about 36.5% of Ce element per NPs (A-nanoceria); (**C**) Full XPS spectra of A-nanoceria (related to fitted data presented on **Figure 4C**); (**D**) NPs uptake measured by Ce signal was detected by ICP-OES. RAW 264.7 and THP-1 cells were treated with different concentrations of A-nanoceria (0.5, 5, and 50 ug/mL) and the results showed a concentration-dependent uptake, more intensive in the case of RAW cells;

(E) MTT cytotoxicity assay (black: untreated cells, blue: RAW 267.4 cells and light blue: THP-1 cells treated with 0.5, 1, 10, 50 μ g/mL A-nanoceria, where N = 10, error bars = SD The 1.4 and 1.6-fold decrease in RAW and THP-1 cells, respectively, was revealed after treatment with 50 μ g/mL A-nanoceria.

Figure S3. Flow cytometry analysis of (**A**) RAW 264.7 cells and (**B**) THP-1 cells: cells were treated with LPS/IFN- γ and IL-4/IL-13 for 24 h moving cells to M1- and M2-like phenotypes, respectively (see Q2/Q3 and Q1).

Figure S4. qRT-PCR analysis of (**A**) IL-1 β and (**B**) iNOS expression in RAW 264.7 cells: untreated, treated with LPS/IFN- γ and LPS/IFN- γ /A-nanoceria for 24 h. Both M1-phenotype (activated by LPS/IFN- γ) markers, IL-1 β and iNOS, were decreased by A-nanoceria treatment (N = 3, error bar = SD, *p < 0.05, **p < 0.005).

Figure S5. Animal study: full time range including CIA model preparation and further study with RA clinical scoring evaluation. The adjuvant and collagen II were injected intra-dermally twice at day 0 and day 21, after that animals developed RA signs and study started with intra-articular injection of A-nanoceria or PBS. MTX solution was injected intraperitoneally. Animal were measured their clinical scores three time a week from 21 day to 43 day of the study.

Figure S6. Immunohistology analysis of tissue sections harvested from normal mice: with no treatment or after treatment with PBS. DAPI is in blue, CD11b and isotype are in red, iNOS is in pink, and Arg-1 is in yellow. Scale bar = 100μ m.

Figure S7. IVIS analysis of ICG signal for three formulations: ICG; ICG-PEG-nanoceria; ICG-A-nanoceria. (A) images of ICG signal in CIA animals after tail vein injection at 1, 3, and 24 h time points; (B) the plots of raw ICG signal intensity in the arthritic paws of CIA mice by three formulations from (A) where N = 3, error bars = SEM; (C) plot of raw ICG signal intensity in the tail of CIA mice by three formulations from (A). Black: ICG; blue: ICG-PEG-nanoceria; Red: ICG-A-nanoceria.

Figure S8. Clinical scoring alteration over 21 days course of CIA mice treatment with Ananoceria and two controls (BSA and PBS). (N = 5 mice per group). After three weeks of the treatment course, A-nanoceria-ICG treated group (50 μ L, red line) showed significantly low clinical score than PBS and BSA control groups (50 μ L, blue and black lines, respectively). Albumin itself has no valuable effect on RA recovery (Error bars = SEM and p-value from Mann-Whitney U test: * p < 0.05 compared with PBS).

Figure S9. Western blot of HIF-1 α protein expression in (**A**) RAW 264.7 and (**B**) THP-1 cells: untreated, treated with LPS/IFN- γ , and treated with LPS/IFN- γ /A-nanoceria for 24 h. All samples were normalized to β -actin expression as an internal reference. Treatment of activated macrophage with A-nanoceria demonstrated downregulation of HIF-1 α expression level.