Supporting Information for:

CEST MRI detectable liposomal hydrogels for multiparametric monitoring in the brain

at 3T

Xiongqi Han¹, Jianpan Huang¹, Anthea K.W. To³, Joseph H.C. Lai¹, Peng Xiao¹, Ed X. Wu³, Jiadi Xu^{2,4},

Kannie W.Y. Chan^{1,2*}

¹Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong;

²Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, USA;

³Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong.

⁴F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, USA.

Corresponding author:

Kannie WY Chan, City University of Hong Kong 83 Tat Chee Ave., Kowloon Tong, Hong Kong Tel: +852 34429141 Email: KannieW.Y.C@cityu.edu.hk

Keywords: CEST MRI, hydrogel, liposome, glioblastoma

Figure S1. Injectabilities of hydrogels. **(A)** and **(B)** were viscosity measurements of 1 wt% and 2 wt% alginate hydrogels with and without liposomes under 40% and 80% crosslinking density under various shear rate; **(C)** was viscosity measurements of 0.75% HAMC hydrogels with and without liposomes under various shear rate.

Figure S2. SEM images of the liposomal hydrogel. **(A)** and **(B)** were 1 wt% liposomal alginate hydrogel with 40% and 80 % crosslinking; **(C)** and **(D)** were 2 wt% liposomal alginate hydrogel with 40% and 80 % crosslinking. Scale bar=200 µm.

Figure S3. Cell viability of hydrogels without and with liposomes in (A) percentage; and (B) in normalized cell viability with reference to hydrogels without liposomes (n = 8) two days in culture, where 1% and 2% were the alginate concentration; Ag-I and Ag-II were the alginate hydrogel with 40% or 80% crosslinking density; HMg was the abbreviation of HAMC hydrogel; Lipo represented the liposome-containing hydrogel.

Lipid Conc.	Liposome Conc.	CEST (%)	BA Conc.	CEST (%)	
(mg/mL)	(particles/mL)	-3.4 ppm	(mg/mL)	5.0 ppm	
0	0	0	0	0	
25	1.01×10^{16}	5.94	13.57	20.76	
50	1.54×10^{16}	10.30	15.48	25.75	
75	1.70×10^{16}	13.20	19.21	26.66	

Table S1. The CEST contrast (%) at 5.0 and -3.4 ppm in different BA-Liposome concentration under 0.8 μ T.

Figure S4. The linear fitting of CEST contrast at 5.0 ppm (**A**) and -3.4 ppm (**A**) by using the data listed in **Table S-1**.

Table S2. Physicochemical properties of Gemcitabine loaded liposomes.

Lipid Conc.	Size (nm)	PDI	Z-potential	Gem Conc.	Encapsulation
(mg/mL)			(mV)	(mg/mL)	Efficiency (%)
25	218.2±3.9	0.127±0.032	-0.79±0.81	14.87±1.27	50.80±0.79

Data represent mean \pm S.D. (n \geq 3).

Figure S5. Drug cumulative release from liposomal hydrogel. **A** BA release profile from the liposomal hydrogel of 1% Lipo-Alg-II and 2% Lipo-Alg-I, which showed equivalent mechanical properties. **B** Gemcibine (Gem) release profile from its liposomal hydrogel of 2% Lipo-Alg-I. Data was presented as mean \pm SD (n=3).

Figure S6. B₁ optimization for *in vivo* measurements. **A** and **B** were the Z-spectra and corresponding CEST contrasts of liposomal hydrogel 4 hours after transplantation under various B₁ fields. Under 0.8 μ T, it gave out the highest NOE contrast at -3.4 ppm. While under 1.2 μ T, it produced good CEST contrast with clear peaks at 5.0 ppm. Thus, 0.8 μ T and 1.2 μ T were selected for *in vivo* monitoring of CEST contrast at -3.4 and 5.0 ppm, respectively.

Figure S7. Histological assessment 4 hours and 3 days after hydrogel implantation using H&E staining, in which the scaffold appeared purple. Scale bar = $200 \,\mu\text{m}$.

Figure S8. CEST contrast of U87 cell dispersed in alginate hydrogel with various cell density. **A** Z-spectra and **B** the corresponding CEST contrast by Lorentz fitting.

Figure S9. The *in vivo* representative longitudinal Z-spectra raw data and Lorentzian fitting results using the Z-spectra between -0.8 ppm to 0.8 ppm and $6\sim7$ ppm. (A) and (B) were respectively for Lipo-Alg under 1.2 μ T and Alg hydrogel 0.8 μ T at different time points.