Supplementary Material

Supplementary Methods 1. Magnetic resonance image acquisition parameters used in the present study.

All the patients from the Yunnan Tumor Hospital were examined using the SIEMENS 1.5T Avanto MRI with the following scanning parameters: axial T2-weighted spinecho images (repetition time [TR]/ echo time [TE]: 4000/100 ms, field of view [FOV] $= 20 \times 18$ cm, number of excitation [NEX] = 4, slice thickness = 3 mm, spacing between slices = 0.3 mm) and sagittal contrast- enhanced T1-weighted spin-echo images (TR/TE: 4.65/1.55 ms, FOV = 26 × 22 cm, NEX = 8, slice thickness = 3.6 mm, spacing between slices = 0.7 mm).

The patients from Sun Yat-sen University Cancer Center were examined using the 1.5T GE Signa MRI and the 3.0T GE Discovery750 MRI.

The 3.0T GE Discovery750 MRI acquisition parameters were as follows: axial T2weighted spin-echo images (TR/TE: 3966/86 ms, FOV = 36×36 cm, NEX = 2, slice thickness = 5 mm, spacing between slices = 1mm) and sagittal contrast- enhanced T1weighted spin-echo images (TR/TE: 5.25/1.82 ms, FOV = 28×28 cm, NEX = 1, slice thickness = 3 mm, spacing between slices = 0 mm).

The 1.5T GE Signa MRI acquisition parameters were as follows: axial T2-weighted spin-echo images (TR/TE: 3283/87 ms, FOV = 36×36 cm, NEX = 2, slice thickness =5 mm, spacing between slices =1mm) and sagittal contrast- enhanced T1-weighted spin-echo images (TR/TE: 4.1/1.96 ms, FOV = 28×26 cm, NEX = 1, slice thickness = 3 mm, spacing between slices = 0 mm).

The image matrices were 512×512 for all the patients.

Supplementary Methods 2. Patients flowchart

Patients with stage IB to IIA cervivcal cancer

Center 1 (n= 412), Center 2 (n= 268)

Exclusion of patients with preoperative chemotherapy Center 1 (n= 25), Center 2 (n= 22)

Patients with pretreatment MRI scan

Center 1 (n= 387), Center 2 (n= 246)

Exclusion for the following reasons:

1. Lack of sagittal T1+C images: Center 1 (n= 30); Center 2 (n= 29)

2. Missing data for SCC and HPV: Center 1 (n=34); Center 2 (n=51)

3. Missing data for follow up: Center 1 (n= 175); Center 2 (n= 66)

Patients included in this retrospective study

Center 1 (n= 148); Center 2 (n= 100)

Supplementary Methods 3. Mathematical description of the Cox model

The Cox proportional hazard model is defined as follows [1]:

$$h(t|X) = h_0(t)e^{\beta^T X}$$
Eq. 1

where h(t|X) is the hazard ratio of patient X at time t, $h_0(t)$ is the baseline hazard that is independent of patient, $X = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}^T$ is the radiomic feature for the patient, and $\beta = \begin{bmatrix} \beta_1 & \beta_2 & \cdots & \beta_n \end{bmatrix}^T$ is a vector of coefficients for the radiomic feature X, which is determined in the training phase.

The baseline hazard $h_0(t)$ is the same for each patient (i.e., independent of patient). To achieve personalized DFS prediction, we mainly focus on the $e^{\beta^T X}$ in h(t|X)since this part varies from person to person. Consequently, we simplify $h(t|X) = h_0(t)e^{\beta^T X}$ into $h(X) = e^{\beta^T X}$. Here, h(X) is defined as the hazard ratio for the patient X, which is also defined as the Rad-score in this study. This value is independent of time, and the range of this value is larger than 0, indicating the relative risk or hazard of the patient X being disease progression.

The computational process was implemented in lifelines package in Python (https://lifelines.readthedocs.io/en/latest/index.html).

Supplementary Figure S1. Distribution of the selected radiomic features and the Rad-score. The line in each figure is the linear regression of the points, and the shadow represents confidence interval.

Feature name feature 1 CET1w wavelet-HH firstorder Median feature 2 CET1w original shape Flatness feature 3 CET1w wavelet-HL firstorder Minimum feature 4 CET1w wavelet-HL glcm SumEntropy feature 5 CET1w wavelet-LH gldm LargeDependenceHighGrayLevelEmphasis feature 6 CET1w wavelet-LH glszm SmallAreaLowGrayLevelEmphasis feature 7 CET1w wavelet-HL glcm Autocorrelation feature 8 CET1w_wavelet-LL_glcm_Imc2 feature 9 CET1w log-sigma-4-0-mm-3D firstorder 90Percentile feature 10 CET1w wavelet-LH gldm SmallDependenceLowGrayLevelEmphasis feature 11 T2w wavelet-LH glszm SizeZoneNonUniformity feature 12 T2w original glrlm LongRunLowGrayLevelEmphasis feature 13 T2w log-sigma-5-0-mm-3D glrlm LongRunLowGrayLevelEmphasis feature 14 T2w original firstorder 10Percentile

Supplementary table S1. The name of the 18 selected radiomic feature

feature 15	T2w_original_glrlm_LowGrayLevelRunEmphasis
feature 16	T2w_log-sigma-5-0-mm-3D_firstorder_Skewness
feature 17	T2w_log-sigma-5-0-mm-
	3D_glszm_SizeZoneNonUniformityNormalized
feature 18	T2w_log-sigma-4-0-mm-3D_firstorder_Maximum

Note: CET1w represents the radiomic feature is extracted from CET1w images, and T2w represents the radiomic feature is extracted from T2w images.

Time	cohort	AUC	ACC
2-year	training	0.799 (0.760, 0.840)	0.738 (0.709, 0.770)
	validation	0.812 (0.748, 0.873)	0.815 (0.777, 0.854)
2.5-year	training	0.814 (0.774, 0.851)	0.750 (0.711, 0.784)
	validation	0.737 (0.669, 0.812)	0.791 (0.743, 0.844)
3-year	training	0.816 (0.781, 0.852)	0.737 (0.705, 0.771)
	validation	0.822 (0.765, 0.886)	0.765 (0.719, 0.812)
3.5-year	training	0.847 (0.813, 0.884)	0.759 (0.723, 0.799)
	validation	0.759 (0.690, 0.827)	0.675 (0.617, 0.733)
4-year	training	0.864 (0.829, 0.898)	0.771 (0.731, 0.810)
	validation	0.764 (0.690, 0.836)	0.657 (0.592, 0.721)

Supplementary Table S2. Performance of the Rad-score on predicting DFS at multiple time points.