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Figure S1. The chemical structure and high-resolution mass spectrum of PTX-R (A) 

and PTX (B). 

 

 

 

Figure S2. Detailed schedule for the treatment scheme in the xenograft tumor model 

 

 

 

 

 

 

 

 

 



 

Figure S3. Schematic illustration of mimetic tissue models preparation.  

Step1: 5 μL of the diluted tissue homogenates of different organs (H, heart; Li, liver; 

Sp, spleen; Lu, lung; K, kidney; Br, brain; M, muscle; Tu, tumor;) containing equal 

amount of drug (S3, 4.45 pmol/mm2 for PTX and 0.79 pmol/mm2 for PTX-R) was 

drawn into the well of a self-custom mold; 5 μL of the diluted tissue homogenates of 

different organs (H, Li, Sp, Lu, K, Br, M, Tu) containing a series of drug standard 

solutions (S1-S8, 0.89, 1.78, 4.45, 8.9, 13.35, 17.8, 35.6, and 71.2 pmol/mm2 for PTX 

and 0.079, 0.158, 0.79, 1.58, 3.95, 7.9, 15.8, and 31.6 pmol/mm2 for PTX-R) were 

drawn into the well of a self-custom mold and a holding time of 5 mins was used to 

allow the sample to dry. 

Step 2: Tissue section preparation of different organs. 

Step 3: Each dried point was covered using the tissue sections of the corresponding 

organ. 



 

Figure S4. The neutral network training result of predicting the relative calibration 

factors of PTX-R (A) and PTX (B) using endogenous metabolites 

 
Figure S5. The VC-QMSI strategy modeling results for PTX. (A) The comparison of 

predicted and true values of the relative calibration factor. (B) Imaging visualization of 

the predicted relative calibration factor. (C) and (D) The non-calibration and virtual 

calibration standard curve constructed with the drug amount versus non-calibrated and 

calibrated PTX intensities, respectively.  



 

Figure S6. Representative MS images of PTX and PTX-R in equivalent amount drug-

spiked mimetic tissue models under different composition of the spray solvent. 

 

 

Figure S7. The extracted ion chromatograms of prodrug (PTX-R) and metabolized 

paclitaxel (PTX) from the raw MSI data of the nude mouse dosed with PTX-R (A) and 

corresponding high-resolution mass spectrum (B) 



 

Figure S8. The spatial-temporal and quantitative distribution of PTX-R in whole-body 

animals (A) and corresponding flank tumors (B) at different time points visualized by 

AFADESI-MSI. 

 

 

Figure S9. Intratumoral distribution of PTX-R with heterogeneous characteristics. (A) 

H&E staining image of a tumor tissue and the magnification (×20) figure of each 

representative tumor microregion. (B) The visualization of PTX-R in tumor 

microregion and the coupling-matching overlay between PTX-R imaging and H&E 

stain imaging. (C) The quantification analysis of PTX-R distribution in tumor 

microregion. 



Table S1 Key parameters of AFADESI-MSI platform.  

 Key Parameters Setting Value 

 Spray voltage 7000 V 

 Transport Tube voltage 0 V 

 Spray gas pressure 0.7 MPa 

Ion source Extracting gas flow 45 L/min 

 Spray solvent composition  Acetonitrile-water (5:5, v:v) 

 Spray solvent flow 10 μL/min 

 X axis moving speed 0.35 mm/s 

 Y axis step size 0.5 mm 

 Scan mode Full MS/t-SIM 

 

Mass range 

Full MS: m/z 100-1000;  

t-SIM: m/z 830-880(PTX); m/z 

950-1000 (PTX-R)                        

Q Exactive 

Mass 

spectrometer 

Polarity Positive 

Maximum inject time 

100 ms for Full MS; 300 ms for t-

SIM 

AGC target 5e6 for Full MS; 3e6 for t-SIM 

 Resolution 70000 

 Capillary temperature 350 ℃ 

 

 

Table S2 The screened endogenous metabolites as native internal standards for 

quantifying PTX-R and PTX in VC-QMSI, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Endogenous metabolites (m/z) 
 PTX PTX-R 

1 112.0870 112.0870 

2 437.1961 568.3444 

3 438.1994 874.7818 

4 569.2410 985.4382 

5 605.4011 986.4415 

6 692.4197 / 

7 693.3649 / 



Table S3 The summary of p-value differences in PTX-R distribution between any two 

organs. 

p<0.05 

 

Table S4 The summary of p values for differences in PTX distribution between any two 

treatment groups. 
 PTX-R/Lipidsomes PTX-R/Injection Injection/Lipidsomes 

Heart 0.058 0.040 0.44 

Liver 0.022 0.014 0.66 

Spleen 0.024 0.0023 0.51 

Lung 0.015 0.0091 0.71 

Kidney 0.017 0.046 0.84 

Brain 0.00040 0.0071 0.57 

Muscle 0.018 0.018 0.30 

Intestines 0.0091 0.0091 0.97 

Stomach 0.020 0.020 0.90 

Tumor 0.56 0.0085 0.044 

p<0.05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Heart Liver Spleen Lung Kidney Brain Muscle Intestines Stomach Tumor 

Heart / 0.23 0.54 0.0030 0.15 0.36 0.94 0.020 0.50 0.0012 

Liver 0.23 / 0.72 0.046 0.58 0.14 0.21 0.46 0.37 0.0012 

Spleen 0.54 0.72 / 0.046 0.99 0.38 0.52 0.32 0.74 0.010 

Lung 0.0030 0.046 0.046 / 0.0065 0.0018 0.0022 0.048 0.0052 0.063 

Kidney 0.15 0.58 0.99 0.0065 / 0.039 0.083 0.079 0.46 0.0020 

Brain 0.36 0.14 0.38 0.0018 0.039 / 0.17 0.0092 0.18 0.00088 

Muscle 0.94 0.21 0.52 0.0022 0.083 0.17 / 0.013 0.40 0.00099 

Intestines 0.020 0.46 0.32 0.048 0.079 0.0092 0.013 / 0.046 0.0070 

Stomach 0.50 0.37 0.74 0.0052 0.46 0.18 0.40 0.046 / 0.0017 

Tumor 0.0012 0.0012 0.010 0.063 0.0020 0.00088 0.00099 0.0070 0.0017 / 



MATLAB source code for data processing in VC-QMSI of PTX and PTX-R [1] 

 

Steps of VC-QMSI 

(1) Data preprocessing 

(2) Regression modeling 

(3) Quantitative standard curve establishment 

(4) Spatial segmentation 

(5) Virtual calibration and quantitation 

 

Self-written MATLAB Scripts 

(1) Data preprocessing: peaklist and datacube; indexing; dimension reduction 

(2) Spatial segmentation 

(3) Regression modelling 

(4) Virtual Calibration and QMSI 

 

Self-defined MATLAB Functions 

(1) peaklist=batchmzxmlread(); %read batch of mzXML files and save into peaklist 

(2) peaklist=batchcdfread('file_prefix',file_numbers); % read batch of cdf files and save into peaklist 

(3) drug=selectimagechanel(drug,channel_no); % select the odd or even channel to form a separate 

image 

(4) rangenorm()  % make certain variable’s value range in [0, 1] interval 

(5) rsd() % calculate the relative standard deviation 

(6) loge() % make natural logarithm transformation 

(7) indximg(vector, row_index, column_index) % to construct the ion image from a vector composed 

of pixel values according to their row and column index. 

(8) massimage(peaklist, target_mz, mass_tolerance) % to construct the ion image by extracting the 

target m/z within each mass spectrum in each file. 

(9) [datacube] = batchmassimage(peaklist,cmz,mass_tolerance) % to construct serial images of ions 

from cmz, the element was extracted from the correspondent certain file (row) and certain scan (column) 

in peaklist within the self-defined mass tolerance. 

 

Variables used in the scripts 

peaklist % the cell contains all of scan files 

datacube % the set of images constructed with series of ions in mass spectrum 

biocube % the set of bio-informative images 

biomat % the 2D matrix only contains those pixels within the tissue region. 

cmz % the vector composed of a column of target metabolite ions and target ion 

indx_pk % the index of all peaks of interest 

indx_pix % the index of pixels. It contains three column representing the unique ID No, row index 

and column index, respectively. 

indx_biopix % the index of pixels which belong to the biological sample. 

indx_biopk % the index of peaks which belong to endogenous metabolites. 

indx_vcpk % the index of analyte response-related peaks used for virtual calibration. 

train_mat % the final matrix used for training machine learning model. 



target_vector % the target for training dataset. 

input % the final matrix put into the machine learning-based regression model. 

output % the result based on model prediction. 

label % the spatial segmentation result for assigning a pixel to certain organ or tissue. 

label_image % the 2D image of the spatial segmentation results. 

tsne_feature % the general tSNE features extracted from the screened region-specific metabolite 

ions. 

rcf1D % the vector composed of predicted relative calibration factors. 

rcf2D % the matrix of predicted pixel’s relative calibration factor based on its location. 

drug2D % the drug ion image. 

drug_vc % the virtually calibrated ion intensity of drug. 

drug_quant % the vector composed of drug quantity in each pixel calculated with QMSI standard 

curve. 

wb_quan_subset % the cell composed of quantitative drug distribution result in each organ or tissue 

region. 

wb_region_subset % the cell composed of several organ subsets, which composed of its regional 

pixel index. 

drug_stata % the statistic information of raw drug ion intensity. 

drug_vc_stata % the statistic information of the virtually calibrated drug ion intensity. 

drug_quant_stata % the statistic information of the quantified drug amount. 

 

Step (1) Data preprocessing 

% reading series of No *.cdf files  

% saved all of raw data into a cell named peaklist 

peaklist=batchmzcdfread('file_prefix',number_of_files); 

% extract the image of drug ion ([M]+, m/z 983.4172) with the mass tolerance±0.005 

% Suppose the whole-body sample was scanned under alternative scan mode (Full MS/t-SIM). 

% then there will be two channels as follows:  

% Channel 1 is Full MS for searching drug response-related ions (m/z 100-1000) 

% Channel 2 is t-SIM for detecting drug ions 

drug=massimage(peaklist,983.4172,0.005); 

drug=selectimagechanel(drug,2); 

% Visualization of Drug distribution across sections 

% ROI selection 

% manually select the pixels within ROI region (Sd1-Sd8)  

% saved them into a cell named roi_sd 

imagesc(drug); 

roi_sd{1,1}=roipoly; 

roi_sd{2,1}=roipoly; 

roi_sd{3,1}=roipoly; 

roi_sd{4,1}=roipoly; 

roi_sd{5,1}=roipoly; 

roi_sd{6,1}=roipoly; 

roi_sd{7,1}=roipoly; 



roi_sd{8,1}=roipoly; 

roi_drug=roi_sd{1,1}+roi_sd{2,1}+roi_sd{3,1}+roi_sd{4,1}+roi_sd{5,1}+roi_sd{6,1}+roi_sd{7,

1}+roi_sd{8,1}; 

% m/z values of endogenous metabolites ions were saved in cmz vector 

% construte sets of ion images based on the peaks in cmz vector 

% cmz vector is composed of main peaks (intensity>1E4) in the average spectrum in whole-body 

sections  

datacube=batchmassimage(peaklist,cmz,0.005); 

for i=1:length(cmz) 

    datacube{i,2}=selectimagechanel(datacube{i,2},1); 

    if size(datacube{i,2},2)~=size(drug,2) 

        datacube{i,2}=datacube{i,2}(:,1:end-1); 

    end 

end 

clear i 

clc 

% Peak Selection 

% Selection rule: peaks with S/N＞=2 (self-determined threshold) 

% S/N of certain ion was defined as the ratio of average intensities across sample region versus 

that within background region.  

% If S/N of certain ion is smaller than the setted threshold value, that 

% ion will be considered as the background ion and ruled out. 

% The remained ions in cmz vector will be saved for the following process 

sn_threshold=2; 

n=0; 

for i=1:length(datacube) 

   temp=datacube{i,2}; 

   x=temp(find(roi_drug==1)); 

   y=temp(find(roi_drug==0)); 

   if mean(x)>=sn_threshold*mean(y); 

       n=n+1; 

       biocube{n,1}=datacube{i,1}; 

       biocube{n,2}=datacube{i,2}; 

   end 

   temp=[]; 

end 

clear i n temp x y sn_threshold 

clc 

% Pixel and Peak registration 

% edit the index information for each pixel and save it as pix_indx(row_indx, col_indx) 

% edit the index information for each peak and save it as pk_indx(Peak No, peak value) 

rows=size(drug,1);columns=size(drug,2); 

col_indx=repmat([1:columns]',rows,1); 

temp=repmat([1:rows],columns,1); 



row_indx=temp(:); 

no_indx=1:length(drug(:)); 

pix_indx=[no_indx',row_indx,col_indx]; 

clear col_indx row_indx no_indx temp columns rows 

pk_indx=[[1:length(cell2mat(biocube(:,1)))]',cell2mat(biocube(:,1))]; 

clc 

% Pick up the data from those pixels within the ROI regions  

% followed by constructing the training dataset named biomat.  

% In the biomat matrix,each column represents one metabolite ion,each row represents one pixel's 

endogenous metabolite ions.  

for i=1:length(biocube) 

    temp=biocube{i,2}.*roi_drug; 

    biomat(:,i)=reshape(temp',size(temp,1)*size(temp,2),1); 

end 

% Pick out the data from those pixels within the ROI region from drug ion or its isotope ion image 

% and construct the target for the training dataset. 

key=roi_drug'; 

biopix_indx=pix_indx(find(key(:)==1),:); 

biomat=biomat(find(key(:)==1),:); 

drug_temp=drug'; 

target=drug_temp(find(key(:)==1)); 

clear i temp key drug_temp 

clc 

% To check if the biomat was correctly constructed by pixel/peak selection 

% column(m/z) vector from biomat was manually selected to reconstruct the ion image 

imagesc(indximg(biomat(:,1),biopix_indx(:,2),biopix_indx(:,3))); 

figure(2) 

imagesc(indximg(target,biopix_indx(:,2),biopix_indx(:,3))); 

% Feature Selection 

% Features should be selected to form input of training dataset.  

% Those metabolite ions which have similar variation with the drug ion  

% across different simulative organ sections could be considered as 

% drug response related ions or the features.  

% Pearson correlation coefficient "r" was employed to screening features. 

% Select Top N (2~10) variables from correlation vector as the input feature 

% extract the corresponding column data from biomat to form the input training dataset  

r_threshold=0.4; 

for i=1:size(biomat,2) 

    correlation(i,1)=corr(biomat(:,i),target); 

end 

correlation=[pk_indx,correlation]; 

feature=correlation(find(correlation(:,3)>=r_threshold),1:3); 

train=biomat(:,(feature(:,1)')); 

clear i 



clc 

% make pre-processing of the input and output training dat 

input=rangenorm(train); 

output=rangenorm(target); 

 

Step (2) Regression modeling  

% Artifical Neural Network (ANN) 

% Solve an Input-Output Fitting problem with a Neural Network 

% This script assumes these variables are defined: 

%   input - input data. 

%   output - target data. 

x=rangenorm(train); 

y=rangenorm(target); 

x=x'; 

t=y'; 

% Choose a Training Function 

trainFcn = 'trainlm';  % Levenberg-Marquardt 

% Create a Fitting Network 

hiddenLayerSize = 10; 

net = fitnet(hiddenLayerSize,trainFcn); 

% Setup Division of Data for Training, Validation, Testing 

net. divideParam. trainRatio = 70/100; 

net. divideParam. valRatio = 15/100; 

net. divideParam. testRatio = 15/100; 

% Train the Network 

[nn,tr]=train(net,x,t); 

% Test the Network 

y=net(x); 

e=gsubtract(t,y); 

performance=perform(net,t,y) 

% View the Network 

view(net) 

%test the fitted model with the real section data 

rcf1D'=net.net(xx'); 

rcf1D=rcf1D'; 

rcf2D=indximg(rcf1D,indx_biopix(:,2),indx_biopix(:,3)); 

imagesc(rcf2D); 

 

Step (3) Quantitative standard curve establishment 

% Visualization of drug standard curve 

% ROI selection 

% manually select the pixels within ROI region (Sd1-Sd8)  

% saved them into a cell named roi_sd 

imagesc(drug); 



drug_vc= drug./rcf2D; 

roi_sd{1,1}=roipoly; 

roi_sd{2,1}=roipoly; 

roi_sd{3,1}=roipoly; 

roi_sd{4,1}=roipoly; 

roi_sd{5,1}=roipoly; 

roi_sd{6,1}=roipoly; 

roi_sd{7,1}=roipoly; 

roi_sd{8,1}=roipoly; 

roi_drug=roi_sd{1,1}+roi_sd{2,1}+roi_sd{3,1}+roi_sd{4,1}+roi_sd{5,1}+roi_sd{6,1}+roi_sd{7,

1}+roi_sd{8,1}; 

% to calculate the drug intensity in each organ labeled from 1 to 8 

for i=1:length(roi_sd) 

    temp=drug_quant(find(roi_sd {i,2}==1)); 

    temp=temp(find(temp>0)); 

    drug_stata(i,:)=[mean(temp),std(temp),rsd(temp)]; 

    temp=[]; 

end 

clear i 

clc 

Step (4) Spatial segmentation 

% reading batch No *.cdf file and save them into a cell named peaklist 

peaklist=batchmzcdfread('file_prefix_name',file_numbers); 

% using signature or cmz vector to construct the biocube which is composed 

% of correpondent m/z value in the 1st column and its 2D image data in the 2nd column. 

mass_tolerance=0.005; 

datacube=batchmassimage(peaklist,cmz,mass_tolerance); 

for i=1:length(cmz) 

    datacube{i,2}=selectimagechanel(datacube{i,2},1); 

    if size(datacube{i,2},2)~=size(drug,2) 

        datacube{i,2}=datacube{i,2}(:,end-1); 

    end 

end 

clear i 

clc 

% extract the image of typical high-abundance metabolite ion,choline m/z 104.1071,  

% as the reference region of sample 

distance=abs(162.1123-cell2mat(datacube(:,1))); 

key=find(distance==min(distance)); 

imagesc(datacube{key,2}); 

clear distance key; 

clc 

% manually select the whole-body section region named as roi_bio 

roi_bio=roipoly; 



% transfer from 3D biocube into 2D biomatrix 

for i=1:length(datacube) 

    temp=datacube{i,2}.*roi_bio; 

    temp=temp'; 

    datamat(:,i)=temp(:); 

end 

key=roi_bio'; 

biopix_indx=pix_indx(find(key(:)==1),:); 

biomat=datamat(find(key(:)==1),:); 

clear i temp key 

clc 

% to validate if the dimension reduction result was correct 

imagesc(indximg(biomat(:,1),biopix_indx(:,2),biopix_indx(:,3))); 

% Unsupervised pixel clustering 

% data standardization 

biomat_std=zscore(biomat); 

% t-SNE dimension reduction from 50 variables into 3 features 

tsne_feature=tsne(biomat_std,[],3,50); 

%The class label was defined as No.1-14 

%The pixels within sample region was clustered using kmeans clustering 

label=kmeans(tsne_feature,10); 

%display the clustering results 

scatter3(tsne_feature(:,1),tsne_feature(:,2),tsne_feature(:,3),20,label,'fill'); 

xlabel('tSNE1');ylabel('tSNE2');zlabel('tSNE3'); 

figure(2) 

%recheck the clustering results by visualization of label image 

label_image=indximg(label,biopix_indx(:,2),biopix_indx(:,3)); 

imagesc(label_image); 

colormap(jet(15)); 

 

Step (5) Virtual calibration and quantitation 

% with virtual calibration, quantified with single standard curve 

rcf2D=indximg(pred_rcf,indx_biopix(:,2),indx_biopix(:,3)); 

drug_vc=drug./rcf2D; 

%after calibration, direct quantitation at any point can be calculated with single standard curve 

% in this example, the slope and intercept of the virtually calibrated 

% standard curve is 89085 and 251437, respectively 

drug_quant=(drug_vc-intercept)/slope; 

% to calculate the drug quantity in each organ labeled from 1 to 10 

for i=1:length(wb_quan_region) 

    temp=drug_quant(find(wb_quan_region{i,2}==1)); 

    temp=temp(find(temp>0)); 

    drug_stata(i,:)=[mean(temp),std(temp),rsd(temp)]; 

    temp=[]; 



end 

clear i 

clc 
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