An EPR Strategy for Bio-responsive Fluorescence Guided Surgery with Simulation of the Benefit for Imaging

Harrison C. Daly,¹ Emer Conroy,² Mihai Todor,¹ Dan Wu,¹ William M. Gallagher,² Donal F. O'Shea*¹

¹ Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2, Ireland.

² School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland.

Supporting Information

Legends for Movies S1 - S6	S 2
Figure S1: HPLCs of 1a-c , 2a	S 3
Figure S2: NMR of 1a-c , 2a	S5
Figure S3. Photophysical spectra of 1c	S 7
Figure S4. Widefield fluorescence MDA-MB 231 cells images of 1a-c	S 8
Figure S5. Plot of tumor emission intensities over time for 1a-c	S 9
Figure S6. TBR analysis for <i>always-on</i> PEG NIR-AZA 2a	S10
Figure S7. Fluorescence image of excised tumor from animal treated with 1c	S10
Figure S8. Fluorescence intensity of tumor and excised organs for 1a and 1b	S11

Legends for Movies of Simulations

Movie S1: Simulation showing imaging with fast clearance rates from both FOV and ROI with fluorescence in *always-on* mode (Sim-1).

Movie S2: Simulation showing imaging with faster clearance rate from the FOV relative to the ROI with fluorescence in *always-on* mode (Sim-2).

Movie S3: Simulation showing imaging with fast clearance rates from both FOV and ROI with fluorescence in *off-to-on* mode (Sim-3).

Movie S4: Simulation showing imaging with faster clearance rate from the FOV relative to the ROI with fluorescence in *off-to-on* mode (Sim-4).

Movie S5: Simulation showing imaging with faster clearance rate from the FOV relative to the ROI and EPR zone enabled with fluorescence in *always-on* mode (Sim-5).

Movie S6: Simulation showing imaging with faster clearance rate from the FOV relative to the ROI and EPR zone enabled with fluorescence in *off-to-on* mode (Sim-6).

HPLC trace of 1a

HPLC trace of 1b

HPLC trace of $1c\,$

Condition: RP-HPLC with YMC triart phenyl column. Detection method: UV-Vis wavelengths: 254 nm and 650 nm. Eluent $CH_3CN:H_2O = 60:40$ with 10 mM NH_4HCO_3 .

Condition: RP-HPLC with YMC triart phenyl column. Detection method: UV-Vis wavelength 650 nm. Eluent CH_3CN : $H_2O = 70:30$.

¹H NMR of 1a

10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 1H NMR (ppm)

¹H NMR of **2a**

Absorbance (left) and fluorescence (right) spectra of **1c** in PBS buffer/TX-100 (0.34 mM) starting at pH 8 (grey line) to pH 2 (red line). Fluorescence excitation: 630 nm; range: 650 - 900; slit widths: 5/5. Apparent pKa = 4.7.

$\begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0$

Figure S4. Widefield microscopy imaging of 1a-c

Time course of widefield imaging MDA-MB 231 cells treated with 1a (5 μ M)

Time course of widefield imaging MDA-MB 231 cells treated with $1b~(5~\mu\text{M})$

Time course of widefield imaging MDA-MB 231 cells treated with 1c (5 μ M).

FigureS5. Plots showing measured tumor emission intensities over time for **1a** (green traces), **1b** (red traces) **1c** (blue traces).

Figure S6. TBR analysis of *in vivo* fluorescence imaging for *always-on* PEG NIR-AZA **2a**. Values determined by ROI total fluorescence signal of tumor divided by an averaged value of three background regions as measured by Living Image Software v4.7.

Figure S7. Fluorescence image of excised tumor from animal treated with **1c**, 168 h post administration.

Figure S8. Fluorescence intensity of tumor and excised organs for **1a** (at 9 h post administration) and **1b** (at 24 h post administration) (n=2).

