Supplementary Information

NIK links inflammation to hepatic steatosis by suppressing PPAR α in alcoholic liver disease

Yaru Li^{1*}, Mingming Chen^{2*}, Yu Zhou¹, Chuanfeng Tang¹, Wen Zhang¹, Ying Zhong¹, Yadong Chen³, Hong Zhou⁴, Liang Sheng^{1,5,6} §

¹Department of Pharmacology, School of Basic Medical Science, Nanjing Medical University, Nanjing, Jiangsu 211166, China;

²Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, Jiangsu 210009, China;

³Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, Jiangsu 211198, China;

⁴Department of Immunology, Nanjing Medical University, Nanjing, Jiangsu 211166, China;

⁵Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, Jiangsu 211166, China;

⁶Department of Rehabilitation Medicine, Jiangsu Province People's Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, Jiangsu 210029, China

*Yaru Li and Mingming Chen contributed equally to this work.

Figure S1. Chronic ethanol feeding and binge both upregulate hepatic NIK; Identification of the stimuli of NIK.

(A) Schematic representation of ALD mouse model replication. (B) Hepatic mRNA level of NIK in mice receiving a chronic-plus-binge ethanol diet (n = 7 for each group). (C) Representative immunoblots of NIK and tubulin in the livers of mice receiving chronic-plus-binge ethanol feeding, single chronic ethanol feeding or single binge. (D) Primary hepatocytes were treated with stimuli as indicated for 24 h after 16 h culture. Cell extracts were immunoblotted with antibodies against p52 or p85. (E) FLAG-tagged NIK and HA-tagged CPT1 α were coexpressed in AML12 cells. Cell extracts were immunoblotted with antibodies against FLAG, HA, or tubulin. Values are demonstrated as means \pm SEM. **P* <0.05, for comparisons with the control.

Hepatocytes were infected with NIK (Ad-NIK) or control (Ad-Control) adenoviruses, and exposed to WY14643 (5 μ mol/L) or vehicle. (A) The mRNA and protein levels of CPT1 α (n = 3 for each group). (B) MTT assay for cell viability (n = 8 for each group). (C) The mRNA and protein levels of CPT1 α in the livers of WT mice fed with a chronic-plus-binge ethanol diet and treated with or without fenofibrate (20 mg/kg/day; n = 7 for each group). (D) The mRNA and protein levels of CPT1 α in the livers of WT mice infected with adenoviruses expressing FLAG-tagged NIK and treated with or without fenofibrate (20 mg/kg/day, n = 7 for each group). Values are demonstrated as means \pm SEM. **P* <0.05, for comparisons with the control.

Figure S3. The effect of NIK on the protein level and nuclear translocation of PPARa and the interactions of PPARa with PGC1a and RXRa.

(A) The extracts of the whole liver, liver cytoplasm, and liver nucleus were immunoblotted with antibodies against PPAR α , β -actin, p85 or lamin B1. WT mice were fed with a chronic-plus-binge ethanol (EtOH-fed) or control diet (Pair-fed; left panel). NIK^{ff} and NIK^{4hep} mice fed with a chronicplus-binge ethanol diet (middle panel), WT mice infected by NIK or control adenoviruses for 5 d (right panel). (B) NIK, HA-tagged PGC1a, and FLAG-tagged PPARa were coexpressed in AML12 cells as indicated. Cell extracts were immunoprecipitated with anti-FLAG M2 affinity gel and immunoblotted with antibodies against HA, FLAG, NIK, or tubulin. (C) HA-tagged RXRa, NIK, and FLAG-tagged PPAR α were coexpressed in AML12 cells as indicated. Cell extracts were immunoprecipitated with anti-FLAG M2 affinity gel and immunoblotted with antibodies against NIK, FLAG, HA, or tubulin. (D) AML12 cells transfected with a vector expressing HA-tagged NIK or a control vector. The extracts from cells or cellular nucleus were immunoblotted with antibodies against p52, ReIA, lamin B1, HA, or β -actin. (E) Luciferase assays were performed to assess PPAR α activity when PPAR α and HA-tagged NIK is overexpressed, with or without the treatment of IKK16 (1 μ mol/L; n = 3 for each group). The extracts from cells or cellular nucleus were immunoblotted with antibodies against p52, RelA, lamin B1, HA, or tubulin. (F) Hepatocytes infected with adenoviruses expressing FLAG-tagged NIK (Ad-NIK) with or without the treatment of IKK16 (1 μ mol/L; n = 4 for each group). The fatty acid oxidation rates were determined. Values are demonstrated as means \pm SEM. *P < 0.05, for comparisons with the control.

Figure S4. The effects of ethanol consumption and NIK activity on the phosphorylation levels of MEK1/2 and ERK1/2 in liver.

Liver extracts were immunoblotted with antibodies against p-MEK1/2, MEK1/2, p-ERK1/2, and ERK1/2. WT mice fed a chronic-plus-binge ethanol (EtOH-fed) or control diet (Pair-fed; left panel), *NIK*^{ff} and *NIK*^{Δhep} mice fed a chronic-plus-binge ethanol diet (middle panel), and WT mice were infected with NIK (Ad-NIK) or control (Ad-Control) adenoviruses for 5 d (right panel). Values are demonstrated as means \pm SEM. **P* <0.05, for comparisons with the control.

Figure S5. The interactions of NIK with MEK1/2 and ERK1/2.

(A) The extracts of AML12 cells expressing FLAG-tagged NIK and HA-tagged MEK1 or MEK2 were immunoprecipitated using anti-FLAG M2 affinity gel and immunoblotted with antibodies against HA, FLAG, and β -actin. (B) The extracts of AML12 cells expressing FLAG-tagged NIK and HA-tagged ERK1 or ERK2 were immunoprecipitated using anti-FLAG M2 affinity gel and immunoblotted with antibodies against HA, FLAG, and tubulin. (C) HA-tagged MEK1 and ERK2 expressed in AML12 cells were immunopurified using Pierce anti-HA agarose. The immunoprecipitates, separated by SDS-PAGE, were subjected to far-western blot analysis using GST-infused NIK as a probe and immunoblotted with antibodies against GST, HA, or MEK1/2.

Figure S6. The interactions of PPARa with MEK1/2 and ERK1/2.

(A) Extracts of AML12 cells expressing FLAG-tagged PPAR α and HA-tagged MEK1 or MEK2 were immunoprecipitated with anti-FLAG M2 affinity gel and immunoblotted with antibodies against HA, FLAG, and tubulin. (B) The extracts of AML12 cells expressing FLAG-tagged PPAR α and HA-tagged ERK1 or ERK2 were immunoprecipitated with anti-FLAG M2 affinity gel and immunoblotted with antibodies against HA, FLAG, and β -actin.

Figure S7. NIK-induced phosphorylation of PPARa.

Extracts of AML12 cells expressing HA-tagged NIK and FLAG-tagged PPAR α and its mutants as indicated were immunoprecipitated with anti-FLAG M2 affinity gel and immunoblotted with antibodies against phosphoserine, HA, FLAG, and tubulin.

Figure S8. Schematic representation of different truncations of PPARa

Figure S9. NIK suppresses fatty acid oxidation by MEK1/2-ERK1/2-PPARα pathway in HepG2 cell.

HepG2 cells were infected by adenoviral vectors expressing FLAG-tagged NIK (Ad-NIK) or control (Ad-Control) for 24 h. After serum starvation for 5 h, cells were subject to subsequent experiments. (A) Fatty acid oxidation rate was determined (n=4 for each group). (B) The mRNA levels of CPT1 α , MCAD, LCAD, and ACOX1 were determined (n=3 for each group). (C) Representative immunoblotting of p-MEK1/2, MEK1/2, p-ERK1/2, ERK1/2, FLAG, and β -actin in cell lysates. (D) Cell extracts were immunoprecipitated with an anti-PPAR α antibody and immunoblotted with antibodies against phosphoserine, PPAR α , FLAG or tubulin. Values are demonstrated as means \pm SEM. **P* <0.05, for comparisons with the control.

Genes	Template	Target Vector	Primers (5'-3')	Sites	
NIK, NIK(KA)	pRK5-NIK pRK5-NIK(KA)	pcDNA-HA3	GATCCCCCGGGCTGCAGGAATTC ATGGCTGTGATGGAAATGGC	5'-EcoR1	
			ATAGAATAGGGCCCCCCCCGAG TTAGGGTCGGTTCTCCAGCTGG	3'-Xho1	
NIK,	pRK5-NIK	pAdeno-TBG- MCS-3Flag	GATCAGATCTCGAGCTCAAGCTT ATGGCAGTGATGGAAATGGC	5'-Hind3	
NIK(KA)	pRK5-NIK(KA)		TAGTACCGGTGAATTCGAAGCTT CGGTCTGTTCTCCAGCTGGCC	3'-Hind3	
NIK	»DV5 NIV	pcDNA3.1 (+)	ACTAGTCCAGTGTGGTGGAATTC ATGGCTGTGATGGAAATGGC	5'-EcoR1	
INIX	prkj-nik		TTAAACGGGCCCTCTAGACTCGA GTTACGGACGGTTCTCCAGCTG	3'-Xho1	
	pSG5 PPARα	p3XFlag - CMV7.1	GATGACAAGCTTGCGGCCGCGAT GGTGGACACAGAGAGC	5'-Notl	
ΓΓΑΚΦ			GTACCAGATCTATCGATGTCAGT ACATGTCTCTGT	3'-Not1	
	pSG5 PPARα	pcDNA-HA3	GGATCCCCCGGGCTGCAGGAATT CATGGTGGACACAGAGAGC	5'-EcoR1	
ΓΓΑΚά			TATAGAATAGGGCCCCCCCTCGA GTTAGTACATGTCTCTGT	3'-Xho1	
PPARα	pSG5 PPARα	pcDNA-HA3	GGATCCCCCGGGCTGCAGGAATT CATGTGTCGAATATGTGGG	5'-EcoR1	
$\Delta A/B$			TATAGAATAGGGCCCCCCCTCGA GTTAGTACATGTCTCTGT	3'-Xho1	
	pSG5 PPARα		GGATCCCCCGGGCTGCAGGAATT CATGGTGGACACAGAGAGC	5'-EcoR1	
PPARa		pcDNA-HA3	AGCTGGTGTACGACAAGTGTAGA		
$\Delta D/T$					
			-	TATAGAATAGGGCCCCCCTCGA	3'-Xho1
	pSG5 PPARα	pcDNA-HA3	GGATCCCCCGGGCTGCAGGAATT	5'-EcoR1	
			ACGACCTGAAAGATAGTGAAGCA		
ΔH1-H2			GTTGCTGGTCTTTCCTGCTTCACT		
			TATAGAATAGGGCCCCCCCCGA	3'-Xho1	
	pSG5 PPARα	pcDNA-HA3 pcDNA-HA3	GITAGIACATGICICIGI GGATCCCCCGGGCTGCAGGAATT	5'-EcoR1	
			CATGGTGGACACAGAGAGC AGGTCCTGTCCTCCTTGATGAAC		
PPARα ΔH3-H5			A GACAGGACCTCTGCCTCTTTGTCT		
			T TATAGAATAGGGCCCCCCTCGA	22 321 1	
			GTTAGTACATGTCTCTGT GGATCCCCCGGGCTGCAGGAATT	3 -Xhol	
PPARα	pSG5 PPARα		CATGGTGGACACAGAGAGC	5'-EcoR1	
Δп/-H12			GCTACATGATGTCACAGAACG	3'-Xho1	

Table S1: The primers used for cloning.

PPARα ΔH10-H12	pSG5 PPARα	pcDNA-HA3	GGATCCCCCGGGCTGCAGGAATT	5'-EcoR1	
			CATGGTGGACACAGAGAGC		
			TATAGAATAGGGCCCCCCCCGA	3'-Xho1	
			GTTATGGGAAGAGGAAGGTGT		
PPARα ΔH12	pSG5 PPARα	pcDNA-HA3	GGATCCCCCGGGCTGCAGGAATT	5'-EcoR1	
			CATGGTGGACACAGAGAGC	2 20000	
			TATAGAATAGGGCCCCCCCCGA	3'-Xho1	
			GCTAGGACTCGGTCTTCTTGA		
PGC1a	pcDNA-f: PGC1	pcDNA-HA3	GATCCCCCGGGCTGCAGGAATTC TGTTCTCAAGACTCTGTATGG	5'-EcoR1	
			ATAGAATAGGGCCCCCCCCGAG TTACCTACGCAAGCTTCTCTG	3'-Xho1	
	pMT ERK1	pcDNA-HA3	GTGGATCCCCCGGGCTGCAGGAA	5'-EcoR1	
ERK1					
			ACTATAGAATAGGGCCCCCCCTC GAGGTGTCTGTTCTTGTTAGGG	3'-Xho1	
	pCMV-myc- rERK2- MEK1_fusion		GTGGATCCCCCGGGCTGCAGGAA		
		pcDNA-HA3	TTCAACGAATTCAGATCTGGTAC	5'-EcoR1	
ERK2			CA		
			ACTATAGAATAGGGCCCCCCCCG AGTTAACTTCTGTATCCTGGCTG	3'- Xho1	
	pCMV-myc- rERK2- MEK1_fusion	pCMV-3-tag- 4A-myc	GGATCCCCCGGGTGCAGGAATTC	5' EcoD1	
EDV2			GAATTCAGATCTGGTACCATGGCG	J -ECOKI	
EKK2			AGAGATGAGTTTCTGCTCCTCGA	3' Yhal	
			GACTTCTGTATCCTGGCTGG	5 -All01	
	pCMV-myc- rERK2- MEK1_fusion	pAdeno- MCMV-MCS- 3Flag	TCTCGAGCTCAAGCTTCGAATTC	5'-EcoR1	
FRK2			AGATCTGGTACCATGGCG	J -Leon	
LIXIZ			ATCGTCATCCTTGTAGTCGGATCC GCTTCTGTATCCTGGCTGG	3'-BamH1	
	Mouse liver cDNA F		GATCCCCCGGGCTGCAGGAATTC	51 E D1	
MER 1			ATGCCCAAGAAGAAGCCGACGC	5'-EcoRI	
MEK1		pcDNA-HA3	GAATAGGGCCCCCCCCCGAGTCA	27 VI - 1	
			GATGCTGGCAGCGTGGGTT	3'-Xho1	
MEK2	Mouse liver cDNA	pcDNA-HA3	GATCCCCCGGGCTGCAGGAATTC	5' EcoD1	
			ATGCTGGCCCGGAGGAAGCCGG	J -ECONT	
			GAATAGGGCCCCCCCTCGAGTCA	3'-Xho1	
			CACTGCAGTCCGCGTGGGT	5 -71101	
MEK1	Mouse liver pC cDNA		GGAGCTCCACCGCGGTGGCGGCC	5'-Not 1	
		pCMV-3-tag- 4A-myc	GCATGCCCAAGAAGAAGCCGAC	5 1101 1	
			GAGGTCGACGGTATCGATAAGCTT TACGCCTGCTGCATGGGTTG	3'-Xho1	

Antibody	Company	Cat#	Species raised in	Mono/ polyclonal	Dilution
RelA	Cell signaling technology	8242	rabbit	monoclonal	1:1000
Phospho-ERK1/2	Cell signaling technology	4370	rabbit	monoclonal	1:1000
ERK1/2	Cell signaling technology	4695	rabbit	monoclonal	1:1000
Phospho-GSK3α/β	Cell signaling technology	9327	rabbit	monoclonal	1:1000
GSK3α/β	Cell signaling technology	5676	rabbit	monoclonal	1:1000
Phospho-JNK	Cell signaling technology	4668	rabbit	monoclonal	1:1000
JNK	Cell signaling technology	9252	rabbit	polyclonal	1:1000
Phospho-p38	Cell signaling technology	4511	rabbit	monoclonal	1:1000
p38	Cell signaling technology	9212	rabbit	polyclonal	1:1000
Phospho-MEK1/2	Cell signaling technology	9154	rabbit	monoclonal	1:1000
MEK1/2	Cell signaling technology	8727	rabbit	monoclonal	1:1000
RXRα	Cell signaling technology	3085	rabbit	monoclonal	1:1000
НА	Cell signaling technology	3724	rabbit	monoclonal	1:5000
Flag	Cell signaling technology	14793	rabbit	monoclonal	1:5000
Мус	Cell signaling technology	2276	mouse	monoclonal	1:5000
NIK	Cell signaling technology	4994	rabbit	polyclonal	1:1000
NF-κB (p52)	Santa Cruz Biotechnology	sc-7386	mouse	monoclonal	1:1000
CPT1a	Santa Cruz Biotechnology	sc-393070	mouse	monoclonal	1:1000
tubulin	Proteintech	10068-1- AP	rabbit	polyclonal	1:1000
β-actin	Proteintech	66009-1-Ig	mouse	monoclonal	1:1000
lamin B1	Abcam	ab16048	rabbit	polyclonal	1:1000
phosphoserine	Abcam	ab9332	rabbit	polyclonal	1:1000
ΡΡΑRα	Abcam	ab24509	rabbit	polyclonal	1:1000
SUMO1	Abcam	ab32058	rabbit	monoclonal	1:1000
HRP-conjugated Affinipure Goat Anti- Mouse IgG(H+L)	Proteintech	SA00001-1	goat		1:5000

Table S2: The information concerning the antibodies and beads used.

HRP-conjugated Affinipure Goat Anti- Rabbit IgG(H+L)	Proteintech	SA00001-2	goat	1:5000
Protein A/G-sepharose beads	7-Sea Biotech	P001-2		
Anti-FLAG M2 affinity gel	Sigma- Aldrich	A2220		
Pierce anti-HA agarose	Thermo Fisher Scientific	MA1-12455		

Genes	Species	Forward	Reverse
CPT1a	mouse	CTGATGACGGCTATGGTGTTT	GTGAGGCCAAACAAGGTGATA
MCAD	mouse	ACCCTGTGGAGAAGCTGATG	AGCAACAGTGCTTGGAGCTT
LCAD	mouse	CACTCAGATATTGTCATGCCCT	TCCATTGAGAATCCAATCACTC
ACOX1	mouse	TAACTTCCTCACTCGAAGCCA	AGTTCCATGACCCATCTCTGTC
NIK	mouse	TGTGGGAAGTGGGAGATCCTA	GGCTGAACTCTTGGCTATTCTCA
RPLP0	mouse	AAGCGCGTCCTGGCATTGTCT	CCGCAGGGGCAGCAGTGGT
CPT1a	human	ATCAATCGGACTCTGGAAACGG	TCAGGGAGTAGCGCATGGT
MCAD	human	TGGATAACCAACGGAGGAAAAG	CTGGGGTATCTGCTTCCACA
LCAD	human	TGCAATAGCAATGACAGAGCC	CGCAACTACAATCACAACATCAC
ACOX1	human	AATCGGGACCCATAAGCCTTT	GGGAATACGATGGTTGTCCATTT
GADPH	human	CTGGGCTACACTGAGCACC	AAGTGGTCGTTGAGGGCAATG

Table S3: The primers used for reverse transcriptional quantitative PCR.