1	Supplementary Materials
2	CAMSAP2-mediated noncentrosomal microtubule acetylation drives
3	hepatocellular carcinoma metastasis
4	
5	Dongxiao Li ^{1,2,#} , Xiangming Ding ^{1,2,#} , Meng Xie ^{1,2} , Zheng Huang ^{1,2} , Ping Han ¹ , Dean
6	Tian ^{1,2} , and Limin Xia ^{1,2*}
7	
8	¹ Department of Gastroenterology, Tongji Hospital of Tongji Medical College,
9	Huazhong University of Science and Technology, Wuhan 430030, Hubei Province,
10	China
11	² Institute of Liver and Gastrointestinal Diseases, Tongji Hospital of Tongji Medical
12	College, Huazhong University of Science and Technology, Wuhan 430030, Hubei
13	Province, China
14	[#] These authors contributed equally to this work.
15	
16	
17	Materials and Methods
18	Patient samples and ethics statement
19	This study was approved by the Ethics Committee of Tongji Medical College of
20	Huazhong University of Science and Technology and was performed in accordance
21	with the ethical standards of the World Medical Association Declaration of Helsinki.
22	Cohort I included 360 patients with HCC who underwent curative resection between

2005 and 2009 at the Tongji Hospital of Tongji Medical College (Wuhan, China).
Cohort II included 178 patients with HCC who underwent curative resection between
2010 and 2012 at the Tongji Hospital of Tongji Medical College (Wuhan, China).
Additionally, 90 pairs of fresh-frozen HCC and corresponding adjacent nontumor
tissues and 20 pairs of fresh-frozen metastatic and matched primary HCC tissues
were collected after curative resection at Tongji Hospital affiliated to Tongji Medical
College (Wuhan, China) between 2015 and 2017.

30

31 Lentivirus construction and transfection

32 Lentiviruses encoding short hairpin (sh)RNAs were produced using pLKO.1-puro and 33 pLKO.1-neo (Genechem, Shanghai, China and DesignGene, Shanghai, China) and were denoted as "shCAMSAP2," "shEB1," "shTrio," "shHDAC6," and "shc-Jun." 34 35 Recombinant lentivirus overexpressing CAMSAP2 was constructed using pLKO.1-puro (DesignGene Biotechnology, Shanghai, China) and was denoted as 36 "Lv-CAMSAP2." Cells were transfected using Lipofectamine 3000 (Invitrogen, CA, 37 38 USA) per the manufacturer's instructions. In brief, cells were transfected with lentivirus at a multiplicity of infection of 10-30 for 12 h. The medium was replaced 39 40 with DMEM containing 10% FBS and the cells were cultivated for another 24 h. 41 Transfected cells were selected with puromycin or G418 for 2 weeks. Target gene 42 expression was confirmed by both western blotting and real-time reverse transcription 43 (RT-q)PCR.

45 **Plasmid construction**

46 Plasmids were constructed as previously described [1,2]. All primers used are listed in 47 Table S8. Briefly, a HDAC6 promoter region (-1690/+136) was amplified from 48 human genomic DNA using forward and reverse primers with *MluI* and *XhoI* sites at 49 the 3' and 5' end, respectively. The amplification product was cloned into MluI- and 50 XhoI-digested pGL3-Basic vector (Promega, Madison, WI). Constructs containing a 51 deletion in the 5'-flanking region of the HDAC6 promoter, (-1384/+136) HDAC6, (-469/+136) HDAC6, and (-199/+136) HDAC6, were constructed using the (-52 53 1690/+136) HDAC6 construct as the template. The QuikChange II Site-Directed 54 Mutagenesis Kit (Stratagene, CA, USA) was utilized to mutate putative c-Jun binding sites in the HDAC6 promoter region. The pSpCas9(BB)-2A-Puro (PX459, Addgene) 55 56 vector that was used for the CRISPR/Cas9 knockout and the targeting sequence of 20 57 nucleotides was cloned into the vector (Qijing Biological Technology, Wuhan China). 58 The sequence of sgRNA was designed as previously described [3]. The vectors 59 encoding the α -tubulin point mutations at lysine 40 to arginine (K40R) was generated 60 with the QuikChange II Site-Directed Mutagenesis Kit (DesignGene Biotechnology, 61 Shanghai, China). Sequence integrity was verified by DNA sequencing (Qijing 62 Biological Technology, Wuhan China).

63

64 *In-vivo* metastasis assay and bioluminescence imaging

All experiments involving animals were approved by the experimental animal ethicscommittee of Tongji Medical College of Huazhong University of Science and

67	Technology. All animal procedures were carried out in accordance with the Guide for
68	the Care and Use of Laboratory Animals and standards articulated in the Animal
69	Research: Reporting of In Vivo Experiments. A metastatic HCC model was
70	established in mice as previously described [1,2], with slight modifications. Briefly,
71	6×10^{6} cells were suspended in PBS, mixed with Matrigel (BD Biosciences, CA, USA),
72	and injected orthotopically into the left liver lobes of BALB/c nude mice (male,
73	4-week-old). Each treatment group consisted of 10 mice. For <i>in-vivo</i> monitoring, cells
74	were infected with luciferase-expressing lentivirus (Lv-luc-blast, Hanbio, Shanghai,
75	China) and selected with blasticidin for two weeks. D-Luciferin (Gold Biotechnology,
76	USA) was injected weekly intraperitoneally into each mouse for monitoring tumor
77	formation and metastasis, and images were captured with a Lago X optical imaging
78	system (SI Imaging, USA). Lung tissues were dissected after 10 weeks, fixed with 4%
79	paraformaldehyde, and stained with hematoxylin and eosin.

81 *In-vitro* migration and invasion assays

Transwell assays were conducted as previously described [1,2]. The 3D Culture Hydrogel Kit (BeaverNanoTM, China) was used per the manufacturer's instructions [4]. Briefly, cells were resuspended in 120 μ l of a 10% sucrose solution. After quickly mixing with an equal volume of 20% hydrogel solution, the mixture was immediately spread on a glass-bottom cell-culture dish (NEST, China). Cells were cultured for two weeks and imaged using an Olympus laser-scanning confocal microscope.

89 Microtubule fractionation assay

Microtubule fractionation assays were performed as described previously [5], with 90 slight modifications. Cells were washed with PBS at 37 °C and incubated with 91 92 microtubule-stabilizing buffer (100 mM PIPES, pH 6.8, 2 mM EGTA, 1 mM MgCl₂) supplemented with protease inhibitor cocktail and 0.5% NP-40 at 37 °C for 15 min. 93 94 Lysates were centrifuged at $1,000 \times g$ for 10 min. The pelleted cells were lysed with 95 sodium dodecyl sulfate (SDS) lysis buffer. The cell pellet and supernatant were mixed 96 with sample buffer, boiled, and subjected to SDS-polyacrylamide gel electrophoresis 97 (PAGE).

98

99 Microtubule repolymerization assay

100 Cells were treated with 15 μ M nocodazole (HY-13520, MedChemExpress) at 4 $^{\circ}$ C for

101 30 min to completely depolymerize microtubules, incubated at 37 % for 10 min after

102 drug washout, fixed, and immunostained for α -tubulin (red) and γ -tubulin (green) to

103 visualize microtubules repolymerization. Antibodies used are listed in Table S9.

104

105 **GTPase activation assay**

106 Rac1 activation was analyzed using a Rac1 Pulldown Activation Assay Kit107 (Cytoskeleton, Denver, USA) according to the manufacturer's instructions.

108

109 Luciferase reporter assay

110 The Dual-Luciferase Reporter Assay System (Promega, Madison, WI) was utilized

per the manufacturer's protocol. Briefly, cells transfected with the indicated plasmids were lysed; the lysates were centrifuged at maximum speed for 1 min. Luciferase activity was measured using a TD20/20 Luminometer (Turner Biosystems, USA) and was normalized to Renilla luciferase activity.

115

116 **Co-immunoprecipitation assay**

117 Co-immunoprecipitation was performed as described previously [6]. Briefly, cells 118 were lysed on ice with lysis buffer containing 1% NP-40 (Promoter, China) for 30 119 min. The lysates were centrifuged at $12,000 \times g$ for 15 min. The supernatants were 120 incubated with Protein G-conjugated Sepharose beads (Santa Cruz Biotechnology, TX, 121 USA) and the appropriate antibodies at 4 °C overnight. Immunoprecipitates were 122 washed thrice with lysis buffer and separated by SDS-PAGE. The antibodies used are 123 listed in Table S9.

124

125 Chromatin immunoprecipitation assay

126 Chromatin immunoprecipitation was carried out as described previously [7]. Briefly, 127 transfected cells were cross-linked in 1% formaldehyde at $37 \,^{\circ}$ C for 10 min. After 128 washing with PBS, the cells were resuspended in 300 µl of lysis buffer and sonicated 129 to fragment the DNA. A slurry of Protein G-Sepharose and herring sperm DNA 130 (Sigma-Aldrich, USA) was used to clear the supernatant. The cleared supernatant was 131 incubated with specific antibodies or an isotype control IgG in the presence of Protein 132 G-Sepharose beads and herring sperm DNA for 2 h. The antibodies used are listed in 133 Table S9. The DNA was removed from the beads by immersion in a 1.1 M NaHCO₃

134 and 1% SDS solution at 65 °C for 6 h and purified using a QIAQuick PCR Purification

135 Kit (Qiagen, USA). The primers used are listed in Table S8.

136

137 Quantitative reverse-transcription (RT-q)PCR

Total RNA was extracted using TRIzol Reagent (TaKaRa, Otsu, Japan) and reverse-transcribed using the PrimeScript RT Reagent Kit (TaKaRa) per the manufacturer's instructions. qPCRs were run using SYBR Premix ExTaq (TaKaRa, Otsu, Japan) on ABI StepOne system (Applied Biosystems, Carlsbad, CA, USA). The thermal cyclers were as follows: 40 cycles of 95 °C for 30 s, 95 °C for 5 s, and 60 °C for 30 s. The $2^{-\Delta\Delta Ct}$ method was used to determine fold differences between samples.

144

145 Western blotting

146 Western blot analyses were conducted as previously described [1,2]. Antibodies are147 listed in Table S9.

148

149 Tissue microarray analysis and immunohistochemistry (IHC)

150 Tissue microarrays were constructed as described previously [1,2]. For IHC, 151 paraffin-embedded tissues were cut into 4- μ m-thick sections. The sections were 152 deparaffinized in dimethylbenzene, subjected to gradient alcohol dehydration, treated 153 with 3% H₂O₂ to block endogenous peroxidase, and incubated with primary 154 antibodies overnight. Then, the sections were incubated with the secondary antibody at room temperature for 30 min. Immunoreactivity was visualized with
diaminobenzidine and the sections were counterstained with hematoxylin.
Antibodies are listed in Table S9.

158

159 IHC was evaluated by two independent observers who were blinded to the clinical 160 and outcome data. The percentage of positive cells was scored on a scale of 0 to 4: 0 161 (negative), 1 (1%–25%), 2 (26%–50%), 3 (51%–75%), or 4 (76%–100%). The 162 staining intensity was graded on a scale of 0 to 3: 0 (negative), 1 (weak), 2 (medium), 163 or 3 (strong). Final immuno-activity scores were calculated by multiplying the above 164 two scores, with final scores ranging from 0 to 12. Immuno-activity was considered 165 positive if the final score was \geq 4, or negative if it was <4.

166

167 Anchorage-dependent tumor growth assay

Eight-hundred cells were seeded into a 6-well cell-culture plate and cultivated in DMEM supplemented with 10% FBS at 37 $^{\circ}$ C in a humidified atmosphere containing 5% CO₂ for 14 days. After removing the medium and washing twice with PBS, the cells were fixed with 4% paraformaldehyde at room temperature for 15 min and stained with crystal violet for another 15 min. The plates were imaged using a camera.

173

174 Databases

175 mRNA expression data of CAMSAPs in liver cancer specimens compared to normal

176 liver tissues were obtained from Cancer Genome Atlas (https://cancergenome.nih.gov).

177 IHC staining data of CAMSAPs in liver cancer tissues were downloaded from the
178 Human Protein Atlas program. Kaplan–Meier analysis of The Cancer Genome Atlas
179 data was conducted in cBioportal.

180

181 Statistical analysis

Data are reported as the mean \pm SEM of triplicate experiments. Means were compared using Student's *t*-test. Categorical data were analyzed using Fisher's exact test. Kaplan–Meier analysis and log-rank tests were used to analyze the cumulative recurrence and survival rates. The Mann–Whitney U test was used for statistical quantitative analysis of IF signal intensity. The Cox proportional hazards model was used for univariate and multivariate analyses. All statistical analyses were conducted using SPSS (version 19.0). A value of *P* < 0.05 was considered significant.

189

190 **References**

- Huang W, Chen Z, Zhang L, Tian D, Wang D, Fan D, et al. Interleukin-8
 induces expression of FOXC1 to promote transactivation of CXCR1 and
 CCL2 in hepatocellular carcinoma cell lines and formation of metastases in
 mice. Gastroenterology. 2015; 149: 1053-1067 e14.
- Huang W, Chen Z, Shang X, Tian D, Wang D, Wu K, et al. Sox12, a direct
 target of FoxQ1, promotes hepatocellular carcinoma metastasis through
 up-regulating Twist1 and FGFBP1. Hepatology. 2015; 61: 1920-1933.
- Wu J, de Heus C, Liu Q, Bouchet BP, Noordstra I, Jiang K, et al. Molecular
 Pathway of Microtubule Organization at the Golgi Apparatus. Dev Cell. 2016;
 39: 44-60.
- 4. Han P, Fu Y, Liu J, Wang Y, He J, Gong J, et al. Netrin-1 promotes cell

202		migration and invasion by down-regulation of BVES expression in human
203		hepatocellular carcinoma. Am J Cancer Res. 2015; 5: 1396-1409.
204	5.	Nagae S, Meng W, Takeichi M. Non-centrosomal microtubules regulate
205		F-actin organization through the suppression of GEF-H1 activity. Genes Cells.
206		2013; 18: 387-396.
207	6.	Ding X, Li D, Li M, Wang H, He Q, Wang Y, et al. SLC26A3 (DRA)
208		prevents TNF-alpha-induced barrier dysfunction and dextran sulfate
209		sodium-induced acute colitis. Lab Invest. 2018; 98: 462-476.
210	7.	Xia L, Huang W, Bellani M, Seidman MM, Wu K, Fan D, et al. CHD4 has
211		oncogenic functions in initiating and maintaining epigenetic suppression of
212		multiple tumor suppressor genes. Cancer Cell. 2017; 31: 653-668 e7.
213		
214		
215		
215		
216		
217		
218		
210		
219		
220		
221		
222		
<i>LLL</i>		
223		
224		
225		
<i>44</i> J		
226		

229 Figure S1. (A) Representative data obtained from The Cancer Genome Atlas dataset 230 showing relative mRNA expression levels of CAMSAPs in normal liver versus liver cancer tissues. Box-and-whisker plots indicate the median (horizontal line), 231 interquartile range (box), and 10^{th} -90th percentiles (whiskers). *P < 0.05. (B) IHC 232 233 staining levels for CAMSAPs in liver cancer tissues obtained from the Human Protein Atlas database. (C) Kaplan–Meier analysis of data obtained from The Cancer Genome 234 235 Atlas database revealed a correlation between CAMSAP mRNA expression levels and 236 overall and disease-free survival. (D) Representative data obtained from the Cancer Genome Atlas dataset showing relative mRNA expression levels of CAMSAP2 in 237 238 PAAD, STAD and COAD tissues compared to the levels in normal tissues. 239 Box-and-whisker plots indicate the median (horizontal line), interquartile range (box),

246

Figure S2. (A) Protein levels of CAMSAP2 in the indicated HCC cells as determined by Western blotting. (B) Western blot analysis of CAMSAP2, HDAC6 and Ace-tubulin in the indicated HCC cells. (C) Transwell assays of the indicated HCC cells. Migrating and invading cells were quantified in the lower panel. Data are the mean \pm SEM from triplicate experiments. **P < 0.01. Scale bar, 400 µm.

Figure S3. (A) Bioluminescence imaging of the indicated HCC cells before orthotopic

implantation. (B) IHC staining of positive and negative controls of the indicated
groups. Scale bars, 50 µm. Magnifications of the boxed areas are shown in the lower
panels. Scale bars, 200 µm.

Figure S4. (A) Double staining for CAMSAP2 (green) and α -tubulin (red) in HepG2 and PLC/PRF/5 cells. Scale bars, 100 μ m. Magnifications of the boxed areas are shown in the insets. Scale bars, 20 μ m. (B) Double immunostaining for α -tubulin (red) and the centrosome marker γ -tubulin/CAMSAP2 (green) in control and

264 CAMSAP2-depleted Huh7 cells. Scale bars, 100 μ m. (C) Western blot analysis of 265 CAMSAP2 and GM130 in the indicated cells. (D, E) Western blot analysis of 266 CAMSAP2 and Ace-tubulin in the indicated HCC cells. (F) IF staining of EB1 (green) 267 and α -tubulin/CAMSAP2 (red) in MHCC97H cells. Scale bars, 100 μ m, 20 μ m 268 (insert).

269

Figure S5. (A) Protein levels of CAMSAP2, Ace-tubulin, detyrosinated α-tubulin
(Detyr-tubulin) and tyrosinated α-tubulin (Tyr-tubulin) in the indicated cells as

determined by Western blotting. (B) Western blot analysis of Detyr-tubulin in MHCC97H cells treated with parthenolide (PTL). (C) Transwell assays of the indicated HCC cells. Migrating and invading cells were quantified in the lower panel. Data are the mean \pm SEM from triplicate experiments. Scale bar, 400 µm. (D) Representative IHC staining of CAMSAP2, Ace-tubulin, and Detyr-tubulin in HCC and corresponding adjacent nontumorous tissues. Scale bars, 50 µm. The enlargements of boxed regions are shown in the lower panels. Scale bars, 200 µm.

282	Figure S6. (A) Protein levels of CAMSAP2 and Ace-tubulin in the indicated cells as
283	determined by Western blotting. (B) Transwell assays of the indicated HCC cells.
284	Migrating and invading cells were quantified in the lower panel. Data are the mean \pm
285	SEM from triplicate experiments. *P < 0.05, **P < 0.01. Scale bar, 400 $\mu m.$ (C)
286	Protein levels of CAMSAP2 and Ace-tubulin in the indicated cells as determined by
287	Western blotting. (D) Transwell assays of the indicated HCC cells. Migrating and
288	invading cells were quantified in the lower panel. Data are the mean \pm SEM from
289	triplicate experiments. ** $P < 0.01$. Scale bar, 400 µm. (E) Representative IHC staining
290	of CAMSAP2 (green) and Ace-tubulin/HDAC6 (red) in HCC and corresponding
291	adjacent nontumorous tissues. Scale bars, 50 µm. (F) Protein expression of
292	CAMSAP2, Ace-tubulin and HDAC6 in 8 paired HCC and adjacent nontumorous
293	tissues was detected by Western blotting. N, adjacent nontumorous tissues; T, tumor
294	tissues.

Figure S7. (A) HDAC6 and α TAT1 mRNA expression in the indicated HCC cells was measured by RT-qPCR. The data are presented as the mean \pm SEM for triplicate experiments. **P < 0.01. (B) Incidence and of lung metastasis and bioluminescence imaging of each group at 10 weeks after orthotopic xenografting with the indicated

300 HCC cells. (C) Overall survival of mice in the different groups. (D) Representative 301 H&E staining of lung tissues from each group. Scale bars, 500 mm (upper), 500 μ m 302 (lower). (E) Number of metastatic lung nodules observed in each group. **P < 0.01.

303

304

Figure S8. (A) Western blot analysis of CAMSAP2, HDAC6, Ace-tubulin, phosphorylated JNK, and c-Jun in the indicated cells. (B) Transwell assay of the indicated cells. Migrating and invading cells are quantified in the right panel. Data are the mean \pm SEM from triplicate experiments. Scale bars, 50 µm. **P* < 0.05, ***P* < 0.01.

Figure S9. (A) Anchorage-dependent tumor growth assay of HCC cells treated with the indicated siRNA. (B) Localization of endogenous CAMSAP2 during anaphase and cytokinesis in MHCC97H cells. IF staining of CAMSAP2 (green), α-tubulin (red), and DNA (DAPI, blue). Scale bars, 100 µm. (C) Schematic diagram of the regulatory mechanism of CAMSAP2-mediated noncentrosomal microtubule acetylation driving HCC metastasis.

		Cohort I			Cohort II		
		Tumor CAMSA	P2 expression		Tumor CAMS	AP2 expression	
		Negative	Positive	-	Negative	Positive	-
Clinicopathological varia	bles	(n=176)	(n=184)	P Value	(n=93)	(n=85)	P Value
Age		52.49(9.09)	51.70(9.71)	0.425	51.37(11.95)	50.56(11.47)	0.649
Sex	female	26	30	0.772	19	15	0.705
	male	150	154		74	70	
Serum AFP	≤ 20 ng/ml	33	32	0.785	21	18	0.858
	>20ng/ml	143	152		72	67	
Child-pugh score	Class A	143	153	0.680	67	58	0.624
	Class B	33	31		26	27	
Tumor number	single	127	110	0.015	60	39	0.016
	multiple	49	74		33	46	
Maximal tumor size	≤5cm	103	73	< 0.001	45	27	0.032
	>5cm	73	111		48	58	
Tumor encapsulation	absent	33	76	< 0.001	30	51	< 0.001
	present	143	108		63	34	
Microvascular invasion	absent	119	85	< 0.001	61	36	0.003
	present	57	99		32	49	
Tumor differentiation	I-II	147	122	< 0.001	77	52	0.001
	III-IV	29	62		16	33	
TNM stage	I-II	154	118	< 0.001	79	50	< 0.001
	III	22	66		14	35	

Table S1. Correlation between CAMSAP2 expression and clinicopathological
 characteristics of HCC in human HCC tissues from two independent cohorts

	Recurre	nce					Survival					
Variables	Univaria	ate analysis		multivariate analysis			Univariate analysis			multivariate analysis		
	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value
Age	0.990	0.976-1.004	0.156				0.989	0.974-1.004	0.142			
Sex (female versus male)	0.845	0.578-1.235	0.385				0.902	0.604-1.346	0.613			
Serum AFP (≤20 versus >20 ng/ml)	0.801	0.567-1.131	0.208				0.729	0.494-1.076	0.111			
Child-pugh score (A versus B)	1.074	0.755-1.529	0.690				0.974	0.673-1.411	0.890			
Tumor number (single versus multiple)	0.447	0.343-0.583	< 0.001	0.839	0.596-1.182	0.316	0.443	0.334-0.589	< 0.001	0.992	0.688-1.430	0.964
Maximal tumor size (\leq 5 versus >5 cm)	0.539	0.412-0.705	< 0.001	0.942	0.694-1.280	0.703	0.535	0.401-0.715	< 0.001	1.040	0.746-1.452	0.816
Tumor encapsulation (absent versus present)	2.274	1.733-2.984	< 0.001	1.150	0.829-1.596	0.403	2.451	1.840-3.266	< 0.001	1.183	0.833-1.680	0.349
Microvascular invasion (absent versus present)	0.420	0.323-0.548	< 0.001	0.595	0.436-0.812	0.001	0.410	0.308-0.545	< 0.001	0.647	0.462-0.907	0.011
Tumor differentiation (I-II versus III-IV)	0.304	0.230-0.402	< 0.001	0.813	0.556-1.189	0.286	0.275	0.205-0.368	< 0.001	0.700	0.476-1.029	0.070
TNM stage (I-II versus III)	0.187	0.141-0.249	< 0.001	0.330	0.212-0.515	< 0.001	0.172	0.127-0.232	< 0.001	0.288	0.180-0.459	< 0.001
CAMSAP2 expression (negative versus positive)	0.428	0.326-0.562	< 0.001	0.631	0.469-0.849	0.002*	0.397	0.295-0.536	< 0.001	0.631	0.456-0.875	0.006*

Table S2. Uni- and multivariate analyses of factors associated with survival and recurrence of 360 HCCs (cohort I)

	Recurre	nce					Survival						
Variables	Univari	Univariate analysis		multiva	multivariate analysis			Univariate analysis			multivariate analysis		
	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value	HR	95% CI	P value	
Age	0.988	0.973-1.004	0.153				0.983	0.967-0.999	0.043				
Sex (female versus male)	1.136	0.711-1.813	0.594				1.075	0.652-1.774	0.776				
Serum AFP (≤20 versus >20 ng/ml)	1.021	0.653-1.596	0.927				0.992	0.618-1.593	0.974				
Child-pugh score (A versus B)	0.984	0.654-1.481	0.940				1.091	0.705-1.691	0.695				
Tumor number (single versus multiple)	0.470	0.322-0.687	< 0.001	0.982	0.501-1.923	0.958	0.442	0.297-0.659	< 0.001	1.046	0.515-2.122	0.901	
Maximal tumor size (\leq 5 versus >5 cm)	0.668	0.451-0.989	0.044	0.844	0.524-1.357	0.483	0.656	0.433-0.993	0.046	0.869	0.529-1.429	0.581	
Tumor encapsulation (absent versus present)	2.373	1.622-3.472	< 0.001	0.704	0.388-1.277	0.247	2.438	1.633-3.640	< 0.001	0.637	0.340-1.192	0.158	
Microvascular invasion (absent versus present)	0.434	0.297-0.635	< 0.001	0.450	0.257-0.789	0.005	0.422	0.282-0.629	< 0.001	0.433	0.243-0.772	0.005	
Tumor differentiation (I-II versus III-IV)	0.453	0.304-0.673	< 0.001	0.946	0.591-1.513	0.816	0.415	0.276-0.626	< 0.001	0.869	0.536-1.408	0.567	
TNM stage (I-II versus III)	0.125	0.082-0.190	< 0.001	0.142	0.070-0.288	< 0.001	0.114	0.074-0.176	< 0.001	0.132	0.063-0.276	< 0.001	
CAMSAP2 expression (negative versus positive)	0.433	0.295-0.636	< 0.001	0.621	0.399-0.967	0.035*	0.396	0.263-0.595	< 0.001	0.593	0.370-0.952	0.030*	

 Table S3. Uni- and multivariate analyses of factors associated with survival and recurrence of 178 HCCs (cohort II)

	of HCC in h	uman HCC tis	sues from tw	o independ	lent cohorts				
		Cohort I			Cohort II				
		Tumor EB1 e	expression	_	Tumor EB1 e	_			
		Negative	Positive	Р	Negative	Positive	Р		
Clinicopathological variab	les	(n=203)	(n=157)	Value	(n=100)	(n=78)	Value		
Age		52.68(9.56)	51.31(9.18)	0.168	50.12(12.28)	52.09(10.88)	0.266		
Sex	female	30	26	0.662	15	19	0.128		
	male	173	131		85	59			
Serum AFP	≤20ng/ml	40	25	0.408	19	20	0.361		
	>20ng/ml	163	132		81	58			
Child-pugh score	Class A	170	126	0.407	69	56	0.743		
	Class B	33	31		31	22			
Tumor number	single	144	93	0.025	62	37	0.068		
	multiple	59	64		38	41			
Maximal tumor size	≤5cm	107	69	0.111	43	29	0.446		
	>5cm	96	88		57	49			
Tumor encapsulation	absent	51	58	0.020	35	46	0.002		
	present	152	99		65	32			
Microvascular invasion	absent	128	76	0.007	62	35	0.024		
	present	75	81		38	43			
Tumor differentiation	I-II	165	104	0.001	81	48	0.006		
	III-IV	38	53		19	30			
TNM stage	I-II	164	108	0.010	81	48	0.006		
	III	39	49		19	30			

Table S4. Correlation between EB1 expression and clinicopathological characteristics

		Cohort I			Cohort II		
		Tumor Trio e	xpression		Tumor Trio ex	xpression	_
		Negative	Positive	Р	Negative	Positive	Р
Clinicopathological variab	les	(n=210)	(n=150)	Value	(n=110)	(n=68)	Value
Age		52.44(9.21)	51.58(9.69)	0.392	50.73(11.94)	51.40(11.36)	0.712
Sex	female	33	23	1.000	23	11	0.577
	male	177	127		87	57	
Serum AFP	≤ 20 ng/ml	36	29	0.677	26	13	0.577
	>20ng/ml	174	121		84	55	
Child-pugh score	Class A	170	126	0.487	81	44	0.239
	Class B	40	24		29	24	
Tumor number	single	148	89	0.032	63	36	0.642
	multiple	62	61		47	32	
Maximal tumor size	≤5cm	112	64	0.054	51	21	0.043
	>5cm	98	86		59	47	
Tumor encapsulation	absent	48	61	< 0.001	41	40	0.006
	present	162	89		69	28	
Microvascular invasion	absent	132	72	0.007	69	28	0.006
	present	78	78		41	40	
Tumor differentiation	I-II	176	93	< 0.001	86	43	0.038
	III-IV	34	57		24	25	
TNM stage	I-II	181	91	< 0.001	87	42	0.016
	III	29	59		23	26	

Table S5. Correlation between Trio expression and clinicopathological characteristics of HCC in human HCC tissues from two independent cohorts

		Cohort I			Cohort II		
		Tumor Ace-tubulin expression			Tumor Ace-tu		
Clinicopathological varia	NegativeClinicopathological variables(n=188)		Positive (n=172)	P Value	Negative (n=98)	Positive (n=80)	P Value
Age		51.62(8.68)	52.59(10.14)	0.326	50.79(11.70)	51.23(11.76)	0.804
Sex	female	32	24	0.468	18	16	0.849
	male	156	148		80	64	
Serum AFP	$\leq 20 ng/ml$	37	28	0.414	24	15	0.370
	>20ng/ml	151	144		74	65	
Child-pugh score	Class A	159	137	0.270	65	60	0.250
	Class B	29	35		33	20	
Tumor number	single	136	101	0.008	65	34	0.002
	multiple	52	71		33	46	
Maximal tumor size	≤5cm	104	72	0.012	41	31	0.759
	>5cm	84	100		57	49	
Tumor encapsulation	absent	37	72	< 0.001	28	53	< 0.001
	present	151	100		70	27	
Microvascular invasion	absent	133	71	< 0.001	65	32	0.001
	present	55	101		33	48	
Tumor differentiation	I-II	158	111	< 0.001	79	50	0.011
	III-IV	30	61		19	30	
TNM stage	I-II	160	112	< 0.001	82	47	< 0.001
	III	28	60		16	33	

Table S6. Correlation between Ace-tubulin expression and clinicopathological characteristics of HCC in human HCC tissues from two independent cohorts

		Cohort I			Cohort II		
		Tumor HDAC6 expression			Tumor HDAC	_	
		Negative	Positive	Р	Negative	Positive	Р
Clinicopathological variables		(n=215)	(n=145)	Value	(n=102)	(n=76)	Value
Age		51.24(9.07)	53.34(9.79)	0.038	50.57(11.73)	51.54(11.70)	0.585
Sex	female	37	19	0.304	18	16	0.570
	male	178	126		84	60	
Serum AFP	$\leq 20 ng/ml$	43	22	0.266	26	13	0.203
	>20ng/ml	172	123		76	63	
Child-pugh score	Class A	172	124	0.207	72	53	1.000
	Class B	43	21		30	23	
Tumor number	single	128	109	0.002	46	53	0.001
	multiple	87	36		56	23	
Maximal tumor size	≤5cm	98	78	0.134	37	35	0.218
	>5cm	117	67		65	41	
Tumor encapsulation	absent	79	30	0.001	59	22	< 0.001
	present	136	115		43	54	
Microvascular invasion	absent	107	97	0.002	46	51	0.004
	present	108	48		56	25	
Tumor differentiation	I-II	146	123	< 0.001	64	65	0.001
	III-IV	69	22		38	11	
TNM stage	I-II	145	127	< 0.001	59	70	< 0.001
	III	70	18		43	6	

Table S7. Correlation between HDAC6 expression and clinicopathological characteristics of HCC in human HCC tissues from two independent cohorts

	used in the emolination initiation precipitation ass	лy
Primer name	Primer sequences	Enzyme
Primers for HDAC6 promoter constr	ruct:	
(-1690/+136)HDAC6 sense:	5'-ATATACGCGTCCACTGAGACCGTATGTG-3'	MluI
(-1384/+136)HDAC6 sense:	5'-ATATACGCGTCAGGACATCTTCAAGAGG-3'	MluI
(-469/+136)HDAC6 sense:	5'-ATATACGCGTGACGACAGCGACGATAGC-3'	MluI
(-199/+136)HDAC6 sense:	5'-ATATACGCGTCAGTCGAGAGACGAGGCC-3'	MluI
Antisense:	5'-TATACTCGAGGACCGGTACCTTCCACTC-3'	XhoI
Primers for HDAC6 promoter site-di	irected mutagenesis:	
binding site 1 mutation sense:	5'-GGCGCGGCCTTactaCACGGTCCCCTC-3'	
binding site 1 mutation antisense:	5'-GAGGGGACCGTGtagtAAGGCCGCGCC-3'	

Table S8. Primers used in the chromatin immunoprecipitation assay

	· · · · · · · · · · · · · · · · · · ·	· · ·
Reagent	Catalog #	Provider
Alpha Tubulin	Ab7291	Abcam
CAMSAP2	17880-1-AP	Proteintech
CAMSAP2	HPA026511	Atlas
CAMSAP2	Ab86683	Abcam
EB1	Ab53358	Abcam
EB1	17717-1-AP	Proteintech
Rac1	Ab33186	Abcam
Trio	HPA008157	Atlas
Trio	H00007204-A01	Abnova
Rac1 Pulldown Assay Kit	BK035-S	Cytoskeleton
Acetyl-a-Tubulin	5335	Cell Signaling
Acetylated Tubulin	66200-1-lg	Proteintech
HDAC6	sc-28386	Santa Cruz
HDAC6	56343	Novus Biologicals
AlphaTAT1	ARP42642_T100	Aviva Systems Biology
SIRT2	sc-28298	Santa Cruz
GM130	Ab52649	Abcam
Gamma-tubulin	Ab179503	Abcam
Phospho-JNK	4668	Cell Signaling
Phospho-c-Jun	3270	Cell Signaling
GAPDH	BM3876	Boster
ActinRed	KGMP0012	KeyGEN
Tubulin-Tracker Red	C1050	Beyotime
EHop-016	S7319	Selleck
ITX3	HY-16663	Medchemexpress
Tubacin	HY-13428	Medchemexpress
Thiomyristoyl	HY-101278	Medchemexpress
SP600125	S1460	Selleck
NSC23766	HY-15723	Medchemexpress
Goat Anti-Mouse IgG Light	A25021	Abbkine
Goat Anti-Rabbit IgG heavy	A25222	Abbkine

Table S9. Commercially available reagents used in this study