1 Dysregulated Sp1/miR-130b-3p/HOXA5 axis contributes to tumor

2 angiogenesis and progression of hepatocellular carcinoma

3

4	Yadi Liao ^{1*} , Chenwei Wang ^{1,2*} , Zhiwen Yang ^{1,2} , Wenwu Liu ¹ , Yichuan Yuan ^{1,2} , Kai
5	Li ^{1,2} , Yuanping Zhang ^{1,2} , Yongjin Wang ^{1,2} ,Yunxing Shi ^{1,2} , Yuxiong Qiu ^{1,2} , Dinglan
6	Zuo ¹ , Wei He ^{1,2} ,Jiliang Qiu ^{1,2} , Xinyuan Guan ^{1,3} , Yunfei Yuan ^{1,2} ⊠, Binkui Li ^{1,2} ⊠
7	
8	
9	Inventory of supplementary data
10	1. Supplementary MethodsPage 2 - 4
11	2. Supplementary Figures and LegendsPage 5 - 16
12	3. Supplementary TablesPage 17 - 28

14 Supplementary Methods

15 Cell lines and human umbilical vein endothelial cells.

16	Human HCC cell lines (Huh7, BEL-7402, SMMC-7721, L02, HepG2, SK-hep1,
17	MHCC-LM3, QGY-7703, PLC/PRF/5, Hep3B, MHCC-97H, and MHCC-97L), and
18	transformed human embryonic kidney (HEK293T) cell line were maintained in
19	Dulbecco's modified Eagles's medium (DMEM, Invitrogen, NY) supplemented
20	with 10% fetal bovine serum (FBS, Hyclone, Logan, UT). The Huh7 and BEL-
21	7402 cell sublines, which stably expressed miR-130b-3p (Huh7-miR-130b-3p,
22	and BEL-7402-miR-130b-3p), and the matched control lines (Huh7-vector, and
23	BEL-7402-vector) were established with the Lenti-PacTM HIV Expression
24	Packaging System (GeneCopoeia, Rockville, MD, USA). Similarly, the Huh7 and
25	MHCC-97H cell sublines, which stably knockdown HOXA5 (Huh7-shHOXA5 #33
26	and #34, MHCC-97H-shHOXA5#33 and #34), and the matched control lines
27	(Huh7-shCtrl, and MHCC-97H-shCtrl) were established.
28	Human umbilical vein endothelial cells (HUVECs) were isolated and maintained
29	in serum-free medium for endothelial cells (SFM, Invitrogen). The primary
30	HUVECs were used at passages 3-6 in all experiments.
31	RNA oligoribonucleotides and vectors.

All miRNA mimic and small interference RNA (siRNA) duplexes (Table S5) were
purchased from Genepharma (Shanghai, P.R. China). Si-HOXA5 targeted mRNA
of human HOXA5 (GenBank accession no. NM_019102.3). Si-Sp1 targeted
mRNA of human Sp1 (GenBank accession no. NM_138473). The negative

36 control RNA duplex (NC) for both miRNA mimic and siRNA was nonhomologous
37 to any human genome sequence.

38	miR-130b-3p was overexpressed using pEZX-MR03, while miR-130b-3p inhibitor
39	was overexpressed using pEZX-AM03 vector. HOXA5 was overexpressed using
40	pEZ-Lv105, while HOXA5 was knockdown using psi-LVRU6GP vector. Sp1 was
41	overexpressed using pEZ-Lv105. Wildtype (WT) and mutant (MUT) HOXA5-
42	3'UTR were inserted into pEZX-MT01 firefly luciferase reporter plasmid.
43	To construct the firefly luciferase reporter plasmids for verifying the miR-130b-3p
44	promoter region, the genomic fragments upstream of mature miR-130b-3p were
45	cloned into the EcoRI and HindIII sites upstream of the firefly luciferase gene in
46	pEZX-PG04.1. The plasmid with deletion of the potential binding site of Sp1 was
47	generated by fusion PCR based on the wild-type construct. All of the vectors
10	were purchased from Genecopoeia (Guangzhou, China)
48	
48 49	Esablishemnt of stable knockdown and overexpression HCC cells.
49 50	Esablishemnt of stable knockdown and overexpression HCC cells. Human miR-130b-3p and HOXA5 knockdown or overexpression HCC cells were
49 50 51	Esablishemnt of stable knockdown and overexpression HCC cells. Human miR-130b-3p and HOXA5 knockdown or overexpression HCC cells were generated by lentiviral mediated approach. HEK293T cells (1.5×10 ⁶) were plated
49 50 51 52	Esablishemnt of stable knockdown and overexpression HCC cells. Human miR-130b-3p and HOXA5 knockdown or overexpression HCC cells were generated by lentiviral mediated approach. HEK293T cells (1.5×10 ⁶) were plated in a 10 cm dish and maintained in DMEM with 10% FBS.After 48 hours,
49 50 51 52 53	Esablishemnt of stable knockdown and overexpression HCC cells. Human miR-130b-3p and HOXA5 knockdown or overexpression HCC cells were generated by lentiviral mediated approach. HEK293T cells (1.5×10 ⁶) were plated in a 10 cm dish and maintained in DMEM with 10% FBS.After 48 hours, HEK293T cells were transfected with indicated lentiviral vectors, using Lenti-
49 50 51 52 53 54	Esablishemnt of stable knockdown and overexpression HCC cells. Human miR-130b-3p and HOXA5 knockdown or overexpression HCC cells were generated by lentiviral mediated approach. HEK293T cells (1.5×10 ⁶) were plated in a 10 cm dish and maintained in DMEM with 10% FBS.After 48 hours, HEK293T cells were transfected with indicated lentiviral vectors, using Lenti- PacTM HIV Expression Packaging Kit according to the manufacturer's
49 50 51 52 53 54 55	Esablishemnt of stable knockdown and overexpression HCC cells. Human miR-130b-3p and HOXA5 knockdown or overexpression HCC cells were generated by lentiviral mediated approach. HEK293T cells (1.5×10 ⁶) were plated in a 10 cm dish and maintained in DMEM with 10% FBS.After 48 hours, HEK293T cells were transfected with indicated lentiviral vectors, using Lenti- PacTM HIV Expression Packaging Kit according to the manufacturer's instructions. Collect the pseudovirus-containing culture medium in sterile tubes
49 50 51 52 53 54 55 56	Esablishemnt of stable knockdown and overexpression HCC cells. Human miR-130b-3p and HOXA5 knockdown or overexpression HCC cells were generated by lentiviral mediated approach. HEK293T cells (1.5×10 ⁶) were plated in a 10 cm dish and maintained in DMEM with 10% FBS.After 48 hours, HEK293T cells were transfected with indicated lentiviral vectors, using Lenti- PacTM HIV Expression Packaging Kit according to the manufacturer's instructions. Collect the pseudovirus-containing culture medium in sterile tubes 48 h post transfection and centrifuge the tubes at 500 g for 10 min to get rid of

µm filter and added to the target cells (Huh7 and BEL-7402 cells) in the presence
of 5 µg/mL Polybrene. Puromycin (final concentration: 1.5 µg/mL) or Hygromycin
(100 µg/mL) was used to select stable clones.

61 Cell transfection.

- 62 Reverse transfection of RNA oligoribonucleotides were performed with
- Lipofectamine-RNAiMAX (Invitrogen). Fifty nM of RNA duplex and 100 nM of

64 inhibitor were used for each transfection. Cotransfection of RNA duplex and

- 65 plasmid DNA was performed with Lipofectamine 2000 (Invitrogen). Cell
- transfection was performed according to the manufacturer's instructions
- 67 (Invitrogen, Carlsbad, CA).

68

70 Supplementary Figures and Legends

71 Figure S1

72

Figure S1. The expression of miR-130b-3p in HCC wild type and stable cell lines.

- 74 (A) The expression of miR-130b-3p in HCC wild type cell lines.
- (B) The up-regulated expression of miR-130b-3p was confirmed by qRT-PCR.
- (C) The down-regulated expression of miR-130b-3p was confirmed by qRT-PCR.

Figure S2. The down-regulation of miR-130b-3p inhibits tumor angiogenesis invitro.

81 (A) The down-regulation of miR-130b-3p inhibited tube formation of HUVECs.

82 HUVECs were cultured in TCM from the indicated cells. Representative images

of capillary-like structures and the number of branch points of HUVECs are

84 presented.

(B) Effect of miR-130b-3p on vascularization in the CAM angiogenesis model.

86 Filter discs soaked with TCM were loaded on the CAMs of day-8 chick embryos.

87 After 5 days incubation, the area under and surround the filter was fixed and

photographed. Representative images of neovascularization and the number of
new blood vessels are presented.

90 (C) The down-regulation of miR-130b-3p inhibits HUVECs proliferation *in vitro*.

HUVEC cells were seeded on the 6-well plate with a density of 3×10^5 per well,

and cultured with SFM supplemented with 20% FBS and 0.3% EGF for 6 h. Then

the above medium was replaced with TCM from indicated cells and cultured for

additional 24 h. The numbers of HUVEC cells were counted using the ScepterTM

95 Handheld Automated Cell Counter. Results were based on 6 independent

96 experiments.

100 Figure S3. PCR screen for potential targets of miR-130b-3p.

101 The top 5 potential targets of miR-130b-3p, which were predicted by

bioinformatics algorithms, were screened by qRT-PCR. Among them, HOXA5

103 was shown to be the most significantly downregulated target in HCC cells

105

Figure S4. The mRNA level of angiogenesis relevant genes was upregulated byHOXA5.

(A) The up-regulation of HOXA5 (left) and knockdown efficiency of shHOXA5

111 (right) in Huh7 cells were confirmed by qRT-PCR.

(B) The up-regulation of HOXA5 (left) and knockdown efficiency of shHOXA5

(right) in MHCC-97H cells were confirmed by qRT-PCR.

- (C) (D) The mRNA level of angiogenesis relevant genes was regulated by
- ectopic expression of HOXA5. The expression of MMP9, FGF2, VEGFA, VEGFC,
- 116 PDGFA, and PDGFC in Huh7 (C) or MHCC-97H (D) cells transfected with
- 117 HOXA5 or vector was determined by qRT-PCR.
- (E) (F) The down-regulation of HOXA5 increased the mRNA level of
- angiogenesis relevant genes. The expression of MMP9, FGF2, VEGFA, VEGFC,
- 120 PDGFA, PDGFC in Huh7 (E) or MHCC-97H (F) cells transfected with shHOXA5
- 121 or control vector were determined by qRT-PCR. Results were based on at least
- three independent experiments. Data are presented as their mean \pm SD.

ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

124

Figure S5. Ectopic expression of HOXA5 did not alter the angiogenesis capacityin HCC.

- 130 (A) Western blot analysis showing ectopic expression of HOXA5 in transfected
- 131 Huh7 and MHCC-97H cells.
- 132 (B) The TCM from HOXA5 overexpressed HCC cells did not alter the proliferation
- of HUVECs. HUVECs were grown in complete medium for 12 h at 37° C in a 96-

well plate and then replaced with TCM and cultured for indicated hours. Cell
viability was measured by CCK-8 assay. Three independent experiments were
performed.

137 (C) The TCM from HOXA5 overexpressed HCC cells did not alter the migration

of HUVECs. HUVECs were seeded in the upper transwell chambers with the

139 TCM in the lower compartments and incubated for 12 h.

140 * p < 0.05; ** p < 0.01.

Figure S6. Decreased expression of HOXA5 associated with poor prognosis andangiogenesis in HCC patients.

(A) Overall survival of the public dataset of 80 HCC cases (GSE10141) based on
HOXA5 expression.

- (B) Overall survival of the public dataset of 221 HCC cases (GSE14520) based
- 149 on HOXA5 expression.
- 150 (C) Scatter-plots showing correlation of HOXA5 and CD31 in HCC patients from
- 151 the GEO database (GSE10141, n = 80; GSE10186, n = 118; GSE36411, n = 42).
- (D) Scatter-plots showing correlation of HOXA5 and CD34 in HCC patients from
- the GEO database (GSE10141, n = 80; GSE10186, n = 118; GSE36411, n = 42).
- 154

156 Figure S7

157

158 Figure S7. Regulation of miR-130b-3p by Sp1 in HCC cells.

(A) Schematic diagram of firefly luciferase reporter constructs containing the

indicated genomic fragments upstream of miR-130b-3p gene. Putative Sp1

binding sites are depicted as short vertical lines. Deletion of the Sp1 binding site

162 is depicted as triangle (Δ).

(B) Ectopic expression of Sp1 did not change the promoter activity of p-(-2.0 k).

164 (C) Silencing of Sp1 expression reduced the promoter activity of p-(ΔA).

(D) Silencing of Sp1 expression reduced the promoter activity of p-(ΔB).

169 Figure S8. Effect of HOXA5 Silencing on signaling pathways.

- (A) HOXA5 Silencing did not affect phosphorylation of STAT3 and P53 in HCC
- 171 cells.
- (B) HOXA5 silencing did not affect expression of MMP2 in HCC cells.
- 173 (C) HOXA5 silencing did not affect phosphorylation of P65 in HCC cells.

-	miR-130b-3p			
		High (n = 53)	Low (n = 54)	P value ^a
Gender	M vs. F	50 (94.3%)/3 (5.7%)	47 (87.0%)/7 (13.0%)	0.320
Age	>50 vs. ≤50 yrs	23 (43.4%)/30 (56.6%)	33 (61.1%)/21	0.067
HBV	+ vs ^b	45 (84.9%)/8 (15.1%)	42 (77.8%)/12	0.344
AFP	>200 vs. ≤200 ng/mL	22 (41.5%)/31 (58.5%)	31 (57.4%)/ 23	0.100
Cirrhosis	+ VS	40 (75.5%)/13 (24.5%)	42 (75.5%)/12	0.778
Tumor size	>7 vs. ≤7 cm	33 (62.3%)/20 (37.7%)	23 (42.6%)/31	0.042
Tumor number	>1 vs. 1	19 (35.8%)/34 (64.2%)	18 (33.3%)/36	0.784
MVI ^c	+ VS	15 (28.3%)/38 (71.7%)	9 (16.7%)/45 (83.3%)	0.149
Edmondson grade	III-IV vs. I-II	21 (39.6%)/32 (60.4%)	24 (44.4%)/30	0.613
TNM stage	>l vs. l	32 (60.4%)/21 (39.6%)	24 (44.4%)/30	0.099

 Table S1. Association of miR-130b-3p with clinical features in cohort 1.

^a*P* values were calculated using Chi-squared test.

^b +, presence; -, absence.

^c MVI, microscopic vascular invasion.

		Overall surviv	/al	Recurrence-free survival	
Characteristic	Case	HR(95% CI) ^a	Р	HR(95% CI)	Р
	Number				
Univariate analysis					
miR-130b-3p (High vs. Low) ^b		1.936 (1.030-3.637)	0.040	2.356 (1.399-3.965)	0.001
Gender (M vs. F)		1.150 (0.355-3.730)	0.816	1.254 (0.502-3.132)	0.628
Age (>50 vs. ≤50 yrs)		1.302 (0.695-2.439)	0.410	0.755 (0.457-1.248)	0.273
HBV (+ vs) ^c		2.203 (0.861-5.638)	0.099	2.025 (0.962-4.265)	0.063
AFP (>200 vs. ≤200 ng/mL)		1.984 (1.058-3.720)	0.033	1.840 (1.108-3.055)	0.019
Cirrhosis (+ vs)		0.924 (0.654-1.306)	0.656	0.888 (0.496-1.591)	0.689
Tumor size (>7 vs. ≤7 cm)		3.269 (1.663-6.425)	0.001	3.127 (1.822-5.368)	< 0.001
Tumor number (>1 vs. 1)		1.562 (0.843-2.896)	0.157	1.774 (1.067-2.950)	0.027
MVI (+ vs)		3.311 (1.761-6.226)	< 0.001	2.935 (1.694-5.086)	< 0.001
Edmondson grade (III-IV vs.		1.863 (1.008-3.445)	0.047	1.770 (1.071-2.927)	0.026

Table S2. Univariate and multivariate analysis of factors associated with overall and recurrence-free survival in cohort 1.

I-II)

TNM stage (>I vs. I)	2.534 (1.291-4.973)	0.007	2.537 (1.491-4.317)	0.001	
Multivariate analysis					
miR-130b-3p (High vs. Low)	2.076 (1.009-4.274)	0.047	3.203 (1.707-6.009)	< 0.001	
AFP (>200 vs. ≤200 ng/mL)	-	-	2.125 (1.169-3.863)	0.013	
Tumor size (>7 vs. ≤7 cm)	-	-	2.128 (1.170-3.871)	0.013	
Edmondson grade (III-IV vs.	-	-	1.848 (1.080-3.165)	0.025	
I-II)					

^aHR (hazard ratio) and P values were calculated using univariate or multivariate Cox proportional hazards regression; 95% CI, 95% confidence interval.

^bmiR-130b-3p level was examined in 107 HCC tissues by qPCR and normalized to U6 level. The 50th percentile value of the examined samples was chosen as the cut-off point to separate miR-130b-3p-low from miR-130b-3p-high expression groups.

^c+, presence; -, absence.

|--|

		HO		
		High (n = 229)	Low (n = 220)	P value ^a
Gender	M vs. F	203(88.6%)/26(11.4%)	202(91.8%)/18(8.2%)	0.331
Age	>50 vs. ≤50 yrs	133(58.1%)/96(41.9%)	114(51.8%)/106(48.2%)	0.216
HBV	+ VS ^b	205(89.5%)/24(10.5%)	199(90.5%)/21(9.5%)	0.863
AFP	>400 vs. ≤400 ng/mL	73(31.9%)/156(68.1%)	93(42.3%)/127(57.7%)	0.029
Cirrhosis	+ VS	176(76.9%)/53(23.1%)	180(81.8%)/40(18.2%)	0.238
Tumor size	>5 vs. ≤5 cm	116(50.7%)/113(49.3%)	144(65.5%)/76(34.5%)	0.002
Tumor number	>1 vs. 1	45(19.7%)/184(80.3%)	46(21.0%)/174(79.0%)	0.830
MVI ^c	+ VS	80(34.9%)/149(65.1%)	62(28.2%)/158(71.8%)	0.151
Edmondson grade	III-IV vs. I-II	84(36.7%)/145(63.3%)	99(45.0%)/121(55.0%)	0.090
TNM stage	>l vs. l	115(50.2%)/114(49.8%)	120(54.5%)/100(45.5%)	0.410

^a*P* values were calculated using Chi-squared test.

^b +, presence; -, absence.

^c MVI, microscopic vascular invasion.

		Overall surviv	al	Recurrence-free survival	
Characteristic	Case	HR(95% CI) ^a	Р	HR(95% CI)	Р
	Number				
Univariate analysis					
HOXA5 (Low vs. High) ^b	229/220	1.933 (1.439-2.596)	<0.001	1.689 (1.299-2.197)	<0.001
Gender (M vs. F)	405/44	1.794 (1.000-3.220)	0.050	1.543 (0.954-2.497)	0.077
Age (>50 vs. ≤50 yrs)	247/202	0.890 (0.669-1.184)	0.423	0.707 (0.547-0.913)	0.008
HBV (+ vs) ^c	404/45	1.411 (0.833-2.391)	0.201	2.417 (1.381-4.231)	0.002
AFP (>400 vs. ≤400 ng/mL)	166/283	1.486 (1.116-1.980)	0.007	1.207 (0.927-1.572)	0.162
Cirrhosis (+ vs)	356/93	1.072 (0.751-1.529)	0.703	1.267 (0.910-1.764)	0.161
Tumor size (>5 vs. ≤5 cm)	260/189	1.726 (1.277-2.333)	<0.001	1.349 (1.039-1.751)	0.025
Tumor number (>1 vs. 1)	91/358	1.886 (1.372-2.593)	<0.001	1.632 (1.207-2.206)	0.001
MVI (+ vs)	142/307	1.458 (1.085-1.958)	0.012	1.138 (0.865-1.498)	0.355
Edmondson grade (III-IV vs.	183/266	1.468 (1.103-1.953)	0.008	1.201 (0.926-1.558)	0.168

Table S4. Univariate and multivariate analysis of factors associated with overall and recurrence-free survival in cohort 2.

I-II)

TNM stage (>I vs. I)	235/214	1.936 (1.441-2.602)	<0.001	1.398 (1.080-1.809)	0.011
Multivariate analysis					
HOXA5 (Low vs. High)	229/220	1.758 (1.295-2.386)	<0.001	1.625 (1.239-2.132)	<0.001
Tumor size (>5 vs. ≤5 cm)	260/189	1.474 (1.077-2.017)	0.015	-	-
Tumor number (>1 vs. 1)	91/358	-	-	1.532 (1.024-2.293)	0.038

^aHR (hazard ratio) and P values were calculated using univariate or multivariate Cox proportional hazards regression; 95% CI, 95% confidence interval.

^bHOXA5 level was examined in 449 HCC tissues by immunohistochemistry The 47th percentile value of the examined samples was chosen as the cut-off point to separate HOXA5 -low from HOXA5-high expression groups.

^c+, presence; -, absence.

 Table S5. Sequences of RNA Oligonucleotides

		Antisense Strand/Antisense Primer
Name	Sense Strand/Sense Primer (5'-3')	(5'-3')
miRNA and siR	NA Duplexes	
miR-130b-3p	CAGUGCAAUGAUGAAAGGGCAU	GCCCUUUCAUCAUUGCACUGUU
si-Sp1	AATGAGAACAGCAACAACTCC	GGAGTTGTTGCTGTTCTCATT
NC	UUCUCCGAACGUGUCACGUTT	ACGUGACACGUUCGGAGAATT
shHOXA5 #33	GGATTGAAATAGCACATGCTC	-
shHOXA5 #34	GCTATAGACGCACAAACGACC	-

Table S6. Potential targets of miR-130b-3p predicted by five bioinformatics algorithms,

name	geneName	position	targetScan	picTar	RNA22	PITA	miRanda
hsa-miR-130b-3p	JARID2	chr6:15521916-	2519[7]	2519[7]	2532[9]	2519[7]	2532[9]
hsa-miR-130b-3p	DCBLD2	chr3:98515494-	290[8]	290[8]	290[8]	290[8]	290[8]
hsa-miR-130b-3p	E2F7	chr12:77415244-	337[11]	337[11]	1022[12]	337[11]	2043[12]
hsa-miR-130b-3p	HOXA5	chr7:27181092-	299[14]	299[14]	299[14]	299[14]	302[15]
hsa-miR-130b-3p	PHF3	chr6:64424016-	0[2]	0[2]	0[2]	0[2]	0[2]
hsa-miR-130b-3p	HECW2	chr2:197065029-	28[1]	28[1]	28[1]	28[1]	28[1]
hsa-miR-130b-3p	BAHD1	chr15:40759300-	26[3]	26[3]	26[3]	26[3]	26[3]
hsa-miR-130b-3p	SNX27	chr1:151667243-	113[7]	113[7]	113[7]	113[7]	113[7]
hsa-miR-130b-3p	SPTY2D1	chr11:18630367-	166[9]	166[9]	212[12]	166[9]	166[9]
hsa-miR-130b-3p	SOCS5	chr2:46988493-	7[1]	7[1]	7[1]	7[1]	7[1]
hsa-miR-130b-3p	MIER1	chr1:67452939-	62[5]	31[5]	93[8]	31[5]	186[8]
hsa-miR-130b-3p	MIER1	chr1:67453270-	42[4]	42[4]	46[4]	42[4]	92[4]
hsa-miR-130b-3p	RALBP1	chr18:9537237-	8[1]	8[1]	8[1]	8[1]	8[1]
hsa-miR-130b-3p	MLL	chr11:118395373-	153[12]	153[12]	153[12]	153[12]	153[12]
hsa-miR-130b-3p	PRKD3	chr2:37478132-	21[2]	21[2]	29[3]	21[2]	29[3]

hsa-miR-130b-3p	ARHGAP12	chr10:32096474-	678[13]	678[13]	696[14]	678[13]	686[13]
hsa-miR-130b-3p	EFNB2	chr13:107142397-	160[6]	160[6]	160[6]	160[6]	160[6]
hsa-miR-130b-3p	AKAP1	chr17:55197715-	61[4]	61[4]	61[4]	61[4]	61[4]
hsa-miR-130b-3p	PPARG	chr3:12475686-	67[4]	67[4]	67[4]	67[4]	134[4]
hsa-miR-130b-3p	NPTX1	chr17:78441873-	230[12]	230[12]	230[12]	230[12]	230[12]
hsa-miR-130b-3p	MED12L	chr3:151150626-	0[6]	0[6]	0[6]	0[6]	0[6]
hsa-miR-130b-3p	RAB34	chr17:27041572-	727[13]	364[13]	364[13]	364[13]	364[13]
hsa-miR-130b-3p	ARHGEF12	chr11:120356938-	114[4]	114[4]	114[4]	114[4]	114[4]
hsa-miR-130b-3p	ZFYVE26	chr14:68213503-	5168[23]	5168[23]	5168[23]	5168[23]	5168[23]
hsa-miR-130b-3p	TNRC6A	chr16:24835520-	1180[18]	1180[18]	1195[18]	1180[18]	1195[18]
hsa-miR-130b-3p	MAP3K9	chr14:71196983-	492[15]	492[15]	492[15]	492[15]	492[15]
hsa-miR-130b-3p	RNF38	chr9:36339618-	88[5]	88[5]	88[5]	88[5]	88[5]
hsa-miR-130b-3p	SNPH	chr20:1287720-	2[3]	2[3]	2[3]	2[3]	2[3]
hsa-miR-130b-3p	OTUD3	chr1:20239075-	609[12]	609[12]	609[12]	609[12]	609[12]
hsa-miR-130b-3p	USP33	chr1:78162181-	544[9]	544[9]	549[9]	544[9]	1098[9]
hsa-miR-130b-3p	BTBD3	chr20:11906994-	6239[24]	6239[24]	6239[24]	6239[24]	6239[24]

Transcription factor	Sites (n)	Percentage (%)
Sp1	97	41.81
C/EBPalpha	11	4.74
NF-1	10	4.31
AP-2alphaA	9	3.88
AP-2	7	3.02
NF-kappaB	7	3.02
AP-1	6	2.59
ETF	6	2.59
Krox-20	4	1.72
Oct-1	3	1.29
repressor_of_CA	3	1.29
USF	3	1.29
C/EBP	2	0.86
c-Jun	2	0.86
CPE_binding_pro	2	0.86
c-Rel	2	0.86
CTF	2	0.86
ER	2	0.86
GATA-1	2	0.86
HSTF	2	0.86
MIG1	2	0.86
NF-E2	2	0.86
NF-kappaB-like	2	0.86
Oct-1A	2	0.86
RAP1	2	0.86
TEC1	2	0.86
AP-4	1	0.43
ARP-1	1	0.43
C/EBPalpha(p20)	1	0.43
C/EBPbeta	1	0.43
C/EBPdelta	1	0.43

Table S7. Potential binding sites in the promoter of miR-130b-3p predicted by AliBaba 2.1.

CACCC	1	0.43
СеМуоD	1	0.43
с-Мус	1	0.43
COUP	1	0.43
CPC1	1	0.43
CREB	1	0.43
CREMdeltaC-G	1	0.43
Da	1	0.43
delta_factor	1	0.43
DI	1	0.43
E1	1	0.43
EFI	1	0.43
GABP	1	0.43
GCN4	1	0.43
GLI3	1	0.43
GR	1	0.43
HNF-3	1	0.43
Max1	1	0.43
MBP-1	1	0.43
МуоD	1	0.43
NF-kappaB2	1	0.43
Odd	1	0.43
Olf-1	1	0.43
Pit-1a	1	0.43
PR	1	0.43
REB1	1	0.43
RelA	1	0.43
REV-ErbAalpha	1	0.43
RXR-beta	1	0.43
SRF	1	0.43
Tra-1	1	0.43
YY1	1	0.43

Fable S8. JASPAR reports for	predicted TF binding	g sites in the putativ	e promoter regions	(-2kb to +1) of hsa-miR-130b.
-------------------------------------	----------------------	------------------------	--------------------	-------------------------------

Model ID	Model name	Score	Relative score	Start	End	Strand	predicted site
							sequence
<u>MA0079.3</u>	SP1	15.4315	0.975286119383	1828	1838	+	tcccctcccc
<u>MA0079.3</u>	SP1	14.5098	0.963690996046	1932	1942	+	gccccgcccca
<u>MA0079.3</u>	SP1	14.3493	0.961671715676	1421	1431	+	ccccctcccct
<u>MA0079.3</u>	SP1	13.0804	0.945707226065	1607	1617	+	gccccacccac
<u>MA0079.3</u>	SP1	12.3673	0.93673601417	1823	1833	+	ggccctcccct
<u>MA0079.3</u>	SP1	11.5693	0.926696160379	124	134	+	gctcctccctt