
Materials and methods 

Patients and tissue samples 

We collected 16 multiple gastric cancer patients who underwent subtotal and total gastrectomy at Peking Cancer Hospital from January 

2016 to December 2017. Thirty- three tumor samples and sixteen normal gastric tissue or blood samples were obtained for experiment. 

The clinical information for every patient was collected in detail and the pathological diagnosis for every tumor tissues was confirmed 

again by two independent pathologists. We perform HE staining for selections of every tumor from multiple gastric cancer patients. 

Informed consent was obtained for every patient. The study protocol was approved by the ethical committee of Peking Cancer Hospital. 

 

DNA collection and whole-exome sequencing  

DNA Quantification & Qualification  

The quality of isolated genomic DNA was verified by using these two methods in combination: 

(1) DNA degradation and contamination were monitored on 1% agarose gels.  

(2) DNA concentration was measured by Qubit® DNA Assay Kit in Qubit® 2.0 Fluorometer (Invitrogen, USA).  

Library preparation  

A total amount of 0.6 µg genomic DNA per sample was used as input material for the DNA sample preparation. Sequencing libraries were 

generated using Agilent SureSelect Human All Exon V6 kit (Agilent Technologies, CA, USA) following manufacturer’s recommendations 

and index codes were added to each sample  

Briefly, fragmentation was carried out by hydrodynamic shearing system (Covaris, Massachusetts, USA) to generate 180-280 bp fragments. 

Remaining sticky ends were converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3’ ends of DNA 

fragments, adapter oligonucleotides were ligated. DNA fragments with ligated adapter molecules on both ends were selectively enriched 

in a PCR reaction. After PCR reaction, libraries were hybridized in liquid phase with biotin labeled probe, then magnetic beads with 

streptomycin were used to capture the exons of genes. Captured libraries were enriched in a PCR reaction to add index tags to prepare for 

sequencing. Products were purified using AMPure XP system (Beckman Coulter, Beverly, USA) and quantified using the Agilent high 

sensitivity DNA assay on the Agilent Bioanalyzer 2100 system.  

Clustering & Sequencing  

The clustering of the index-coded samples was performed on a cBot Cluster Generation System using Hiseq PE Cluster Kit (Illumina) 

according to the manufacturer’s instructions. After cluster generation, the DNA libraries were sequenced on Illumina Hiseq platform and 

150 bp paired-end reads were generated. 

Bioinformatics Analysis Pipeline  

1.Basic bioinformatics analysis 

Quality Control 

The original fluorescence image files obtained from Hiseq platform are transformed to short reads (Raw data) by base calling and these 

short reads are recorded in FASTQ format, which contains sequence information and corresponding sequencing quality information.  

Sequence artifacts, including reads containing adapter contamination, low-quality nucleotides and unrecognizable nucleotide (N), 

undoubtedly set the barrier for the subsequent reliable bioinformatics analysis. Hence quality control is an essential step and was applied 

to guarantee the significant downstream analysis. 

The steps of data processing were as follows: 

(1) Discard a paired read if either one read contains adapter contamination (>10 nucleotides aligned to the adapter, allowing ≤ 10% 

mismatches); 

(2) Discard a paired read if more than 10% of bases are uncertain in either one read;  

(3) Discard a paired read if the proportion of low quality (Phred quality <5) bases is over 50% in either one read.  



All the downstream bioinformatics analyses were based on the high quality clean data, which were retained after these steps. At the same 

time, QC statistics including total reads number, raw data, raw depth, sequencing error rate and percentage of reads with Q30 (the percent 

of bases with phred-scaled quality scores greater than 30) were calculated and summarized. 

Reads Mapping to Reference Sequence 

Valid sequencing data were mapped to the reference human genome (UCSC hg19) by Burrows-Wheeler Aligner (BWA) software1 to get 

the original mapping results stored in BAM format. If one or one paired read(s) were mapped to multiple positions, the strategy adopted 

by BWA was to choose the most likely placement. If two or more most likely placements presented, BWA picked one randomly. Then, 

SAMtools2 and Picard (http://broadinstitute.github.io/picard/) were used to sort BAM files and do duplicate marking, local realignment, 

and base quality recalibration to generate final BAM file for computation of the sequence coverage and depth. Mapping step was very 

difficult due to mismatches, including true mutation and sequencing error, and duplicates resulted from PCR amplification. These 

duplicate reads were uninformative and should not be considered as evidence for variants. These duplicate reads were uninformative and 

were not considered as evidence for variants. We used Picard to mark these duplicates for follow up analysis. 

  

Variant Calling 

SAMtools2 mpileup and bcftools were used to do variant calling and identify SNP, InDels.  

Functional Annotation 

Functional annotation was very important because the link between genetic variations and diseases were clarified in this step. ANNOVAR3 

was performed to do annotation for VCF (Variant Call Format) obtained in the previous effort. dbSNP4, 1000 Genome5 and other related 

existing databases were applied to characterize the detected variants. Exonic variants, gene transcript annotation databases, such as 

Consensus CDS, RefSeq, Ensembl and UCSC6, were also included to determine amino acid alternation. Annotation content contained the 

variant position, variant type, conservative prediction, etc. These annotation results helped to locate-causing mutations.  

Somatic Mutation Calling 

The somatic SNVs were detected by muTect 7 and the somatic InDel by Strelka 8. Control-FREEC was used to detect somatic CNVs9. 

Mutation spectrum and mutation signature  

96 trinucleotides of exonic point mutations were extracted, and nonnegative matrix factorization (NMF) algorithm10 was used to decipher 

the underline mutation signatures11. Signatures A, B, and C were identified in tumor samples and the signature spectrums were also analyzed. 

These inferred signatures were compared to the catalog of 30 consensus signatures that were described on the COSMIC website11 

(https://cancer.sanger.ac.uk/cosmic/signatures). 

2. Advanced bioinformatics analysis 

    In order to explore the relationship of different tumor samples within each patient, we conducted clonal analysis, phylogenetic trees 

construction and comparisons between CNVs, driver genes and significantly mutated genes.  

Phylogenetic trees construction  

Phylogenetic trees were constructed at the somatic state. Branch lengths were proportional to the number of mutations separating the 

branching points.  

Clonal frequency analysis  

Pyclone (version 0.12.7) was used to evaluate the clonal population structures. Allelic frequencies of selected somatic mutations were 

obtained using the number of reads covered and the number of reads carrying a variation. The copy number value at each of these loci was 

obtained from Control-FREEC9, and the tumor content was inferred by Absolute12. PyClone13 used a hierarchical Bayesian model to 

calculate the clonal frequency for each mutation, and MCMC analysis was applied for clonal population clustering and cellular frequency 

inference.  



Significantly Mutated Genes (SMGs)  

Compared to the background mutation rate, MuSiC14（Music-0.04）package applies convolution test (CT) to summarize p-values of 

mutational significance. Genes were considered to be SMGs if at least Q-value < 0.2. For SMGs, we conducted pathway enrichment 

analyses with PathScan software15. Databases such as KEGG16, Biocarta, PID and Teactome were utilized to perform this analysis 

Identification of Driver gene 

In order to find the tumor drive genes, we compared the four databases including CGC17, Bert Vogelstein18, SMG12719 and comprehensive 

database20 with an in-house script. 

3. The comparisons between self and public data    

    To evaluate our sequencing results from stomach and EGJ, we collected WES data of 208 GCs and 49 GCs-EGJ from TCGA database, 

respectively. We conducted comparison of tumor mutation burden (TMB)，mutation spectrum and mutation signatures of different location 

tumors among our data and TCGA database. 

Tumor Mutational Burden （TMB） 

Tumor Mutational Burden was calculated for included tumor samples and the TCGA samples21. The TMB was calculated separately by 

tumor site including the esophagus and stomach samples. The boxplot shows the distribution of the TMB with boxplot package. 

Mutation spectrum comparisons 

The distributions of six mutation types within our sequencing data and TCGA samples were presented and compared. 

Mutation signatures comparisons 

Similarly, the spectrum of identified signature A, B and C was compared between our data and public data. The heatmap was used to depict 

the distribution of them. 

The identification of predisposing genes 

To explore the roles of predisposing genes playing in the MGCs, we analyzed the germline mutations of cancer predisposing genes in 

genetic MGCs. The germline mutations identified in cancer-predisposing genes were compared with CGC database17. 

The study of molecular characteristics of genetic MGCs 

    To further study the molecular characteristics of genetic MGCs, we re-analyzed the mutation spectrum, mutation signatures, driver 

mutations, SMGs, clonal analysis and CNV analysis of genetic MGC tumor samples. We also use corrplot R package to calculate mutation 

characteristics of all the samples and the correlation between clinical information. 
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Supplementary Figure 1: The comparison of driver genes and SMGs within different tumor samples of same patients 

Legend: (A) Driver genes landscape shows the distribution of driver genes of all tumor samples. The x-axis shows the different samples 

of same patients. (B) SMGs landscape shows the distribution of SMGs of all included samples. 

 

 

 

Supplementary Figure 2: The mutation spectrum of genetic MGCs. 

Legend: The heatplot shows the mutation spectrum within all genetic MGC tumor samples. The color represents the proportion of each 

mutation type in different tumor samples.  

 

 

 

 

 

 



 

Supplementary Figure 3: Mutation signatures of genetic MGCs 

Legend: The chart shows three mutation signatures of all tumor samples. X-axis represents 96 mutation types. Signature A, signature B 

and signature C indicate three different mutation signatures. 

 

 

Supplementary Figure 4: Cosine similarity heatplot of identified signatures and known signatures 

Legend: The plot shows the proportion of three mutation signatures. The X-axis represents different genetic MGC tumor samples. The Y-

axis indicates the relative weight of signatures. 

 

 



 

 

Supplementary Figure 5: The distribution of mutation signatures in genetic MGCs 

Legend: The chart shows three mutation signatures of all tumor samples. X-axis represents 96 mutation types. Signature A, signature B 

and signature C indicate three different mutation signatures. 

 

 
 

Supplementary Figure 6: The mutational information of driver genes among genetic MGCs 

Legend: The bar chart with different colors indicates different protein functional domains. The number below chart represents the length 

of functional domain. The line means the specific site of mutation. 

 

 
 

 

 

 

 

 



 

Supplementary Figure 7: The mutational information of SMGs among genetic MGCs 

Legend: The bar chart with different color indicates different protein functional domain. The number below chart represents the length of 

functional domain. The line means the specific site of mutation. 

 

 
 

 

Supplementary Figure 8: Profile of somatic copy number variation on exome data of genetic MGCs 

Legend: The chart depicts the distribution of somatic copy number variation (CNV). Red is for CNV gain, green for normal CNV and blue 

for CNV loss. 

 

 

 

 

 

 

 



 

Supplementary Table 1: Information on whole-exome sequencing of 49 samples in 16 MGCs patients 

Sample 
Average_sequencing

_depth_on_target 

Coverage_of_target

_region 

Fraction_of_target_cover

ed_with_at_least_10x 

Fraction_of_target_cov

ered_with_at_least_50x 

Fraction_of_target_cover

ed_with_at_least_100x 

N1 142 100% 100% 94% 65% 

GC1L1 266 100% 100% 98% 91% 

GC1L2 260 100% 100% 97% 89% 

N2 121 100% 99% 91% 56% 

GC2EGJ 263 100% 100% 98% 90% 

GC2L 273 100% 99% 97% 89% 

GC2M1 256 100% 99% 98% 90% 

N3 173 100% 100% 93% 66% 

GC3EGJ 259 100% 100% 98% 90% 

GC3L 286 100% 100% 98% 89% 

N4 146 100% 99% 88% 56% 

GC4L 270 100% 100% 97% 86% 

GC4U 261 100% 100% 97% 89% 

N5 133 100% 100% 84% 48% 

GC5EGJ 272 100% 100% 98% 92% 

GC5L 286 100% 100% 98% 90% 

N6 198 100% 100% 94% 70% 

GC6EGJ 260 100% 100% 98% 90% 

GC6L 249 100% 100% 98% 89% 

N7 124 100% 100% 91% 55% 

GC7L 254 100% 100% 98% 88% 

GC7M 255 100% 100% 98% 86% 

N8 137 100% 100% 92% 60% 

GC8L2 284 100% 100% 98% 90% 

GC8L1 272 100% 100% 98% 89% 

N9 152 100% 100% 94% 68% 

GC9L2 262 100% 100% 98% 89% 

GC9L1 279 100% 100% 98% 90% 

N12 137 100% 100% 93% 62% 

GC12L 254 100% 100% 98% 86% 

GC12M 263 100% 100% 98% 86% 

N13 141 100% 100% 92% 62% 

GC13M 263 100% 100% 98% 86% 

GC13U 269 100% 100% 97% 85% 

N14 148 100% 100% 93% 66% 

GC14L 269 100% 100% 98% 91% 

GC14U 265 100% 100% 98% 90% 

N15 129 100% 100% 90% 57% 

GC15EGJ 261 100% 100% 98% 91% 

GC15L 264 100% 100% 98% 89% 

N16 219 100% 100% 97% 83% 

GC16L 259 100% 100% 98% 90% 



GC16U 269 100% 100% 98% 88% 

N17 121 100% 99% 87% 50% 

GC17L 258 100% 99% 97% 90% 

GC17U 267 100% 100% 98% 91% 

N18 131 100% 99% 89% 56% 

GC18EGJ 286 100% 100% 98% 89% 

GC18L 261 100% 100% 98% 90% 

 


